• Sign In
  • Create Account
  • Sign Out
  • My Account
  • NEWS
  • PRODUCTS
  • CONTRACTORS
  • ENGINEERS
  • RADIANT & HYDRONICS
  • INSIGHTS
  • MEDIA
  • RESOURCES
  • EMAGAZINE
  • SIGN UP!
cart
facebook instagram twitter linkedin youtube
  • CONTRACTORS
  • BATH & KITCHEN PRO
  • BUSINESS MANAGEMENT
  • HIGH EFFICIENCY HOMES
  • TECHNOLOGY
  • WATER TREATMENT
  • PMC COLUMNS
  • PMC COLUMNS
  • Dave Yates: Contractor’s Corner
  • John Siegenthaler: Hydronics Workshop
  • Kenny Chapman: The Blue Collar Coach
  • Matt Michel: Service Plumbing Pros
  • Scott Secor: Heating Perceptions
  • ENGINEERS
  • CONTINUING EDUCATION
  • DECARBONIZATION | ELECTRIFICATION
  • FIRE PROTECTION
  • GEOTHERMAL | SOLAR THERMAL
  • PIPING | PLUMBING | PVF
  • PME COLUMNS
  • PME COLUMNS
  • Christoph Lohr: Strategic Plumbing Insights
  • David Dexter: Plumbing Talking Points
  • James Dipping: Engineer Viewpoints
  • John Seigenthaler: Renewable Heating Design
  • Lowell Manalo: Plumbing Essentials
  • Misty Guard: Guard on Compliance
  • RADIANT & HYDRONICS
  • RADIANT COMFORT REPORT
  • THE GLITCH & THE FIX
  • INSIGHTS
  • CODES
  • GREEN PLUMBING & MECHANICAL
  • PROJECT PROFILES
  • COLUMNS
  • SPONSOR INSIGHTS
  • COLUMNS
  • Codes Corner
  • Natalie Forster: Editorial Opinion
  • Guest Editorial
  • MEDIA
  • PODCASTS
  • VIDEOS
  • WEBINARS
  • RESOURCES
  • INDUSTRY CALENDAR
  • DIRECTORIES
  • EBOOKS
  • PM BOOKSTORE
  • CE CENTER
  • MARKET RESEARCH
  • CLASSIFIEDS
  • EMAGAZINE
  • EMAGAZINE
  • ARCHIVE ISSUES
  • CONTACT
  • ADVERTISE
  • PME EMAGAZINE ARCHIVES
search
cart
facebook instagram twitter linkedin youtube
  • Sign In
  • Create Account
  • Sign Out
  • My Account
  • NEWS
  • PRODUCTS
  • CONTRACTORS
    • BATH & KITCHEN PRO
    • BUSINESS MANAGEMENT
    • HIGH EFFICIENCY HOMES
    • TECHNOLOGY
    • WATER TREATMENT
    • PMC COLUMNS
      • Dave Yates: Contractor’s Corner
      • John Siegenthaler: Hydronics Workshop
      • Kenny Chapman: The Blue Collar Coach
      • Matt Michel: Service Plumbing Pros
      • Scott Secor: Heating Perceptions
  • ENGINEERS
    • CONTINUING EDUCATION
    • DECARBONIZATION | ELECTRIFICATION
    • FIRE PROTECTION
    • GEOTHERMAL | SOLAR THERMAL
    • PIPING | PLUMBING | PVF
    • PME COLUMNS
      • Christoph Lohr: Strategic Plumbing Insights
      • David Dexter: Plumbing Talking Points
      • James Dipping: Engineer Viewpoints
      • John Seigenthaler: Renewable Heating Design
      • Lowell Manalo: Plumbing Essentials
      • Misty Guard: Guard on Compliance
  • RADIANT & HYDRONICS
    • RADIANT COMFORT REPORT
    • THE GLITCH & THE FIX
  • INSIGHTS
    • CODES
    • GREEN PLUMBING & MECHANICAL
    • PROJECT PROFILES
    • COLUMNS
      • Codes Corner
      • Natalie Forster: Editorial Opinion
      • Guest Editorial
    • SPONSOR INSIGHTS
  • MEDIA
    • PODCASTS
    • VIDEOS
    • WEBINARS
  • RESOURCES
    • INDUSTRY CALENDAR
    • DIRECTORIES
    • EBOOKS
    • PM BOOKSTORE
    • CE CENTER
    • MARKET RESEARCH
    • CLASSIFIEDS
  • EMAGAZINE
    • EMAGAZINE
    • ARCHIVE ISSUES
    • CONTACT
    • ADVERTISE
    • PME EMAGAZINE ARCHIVES
  • SIGN UP!
Columns

Tales of TRVs

By Dan Holohan
April 1, 2012
Pressure drop and flow resistance are critical when installing these devices.



Thermostatic radiator valves found their way onto the Empire State Building’s radiators in 1929, and they’re a staple on the hot water radiators of Europe these days. Manufacturers build them right into their radiators, which is nice. Back in my rep days, we took on the Danfoss line of TRVs in 1972, which was a year before the big OPEC oil embargo. Fuel was cheap in 1972. My old boss took the line because he believed in comfort.

We were in New York City, where plenty of steam radiators are installed, and TRVs do a nice job of keeping steam-heated rooms from overheating. We were also on Long Island, which has plenty of old diverter-tee systems. TRVs seemed like a lovely way to zone those old radiators, and we set out to do that, as well as other adventurous things. I learned some hard lessons along the way.

One of the first things I learned was that a TRV, even when fully open, still offers a noticeable resistance to flow. When you have radiators on diverter-tee systems, that resistance might be enough to stop the water altogether. And where there is no flow, there is no heat. It looks just like an air problem. But it’s not.

Oh and whether or not this happened to me depended on the level of confidence I was displaying to the contractor at the time. Pressure drop seemed to increase with my level of verbosity. But this is how we learn humility.

The TRV has two parts. The part that attaches to the pipe is a normally open, spring-loaded valve (with a pressure drop). You attach to this the other part of the TRV, which is an operator containing either a fluid or a wax that is very sensitive to changes in air temperature. As the air temperature rises or falls, the fluid or the wax inside the operator will expand and contract, moving the spring-loaded valve open or closed. Control the flow and you’ll control the heat. You can adjust a TRV to whatever temperature you’d like in the room it serves, typically between 50° to 90° F. Sounds great in a sentence, doesn’t it?

But what you need to watch out for in practice, and this is especially true when you’re working with those diverter tees, is that pressure drop. You’ll find this in the valve manufacturers’ literature. They show it as Cv, which is an engineering term that always appears as a number. For example, you might see Cv = 2.5. That 2.5 is the gallons per minute. Any number that appears after the = in the Cv equation will always be gpm. What the equation is saying is that when, in this case, 2.5 gpm flows across this particular valve, there will be a corresponding 1-psig drop in pressure from one side of the valve to the other.

Cv always relates to a delta P of 1 psi. If you look at two valves, say, one where the Cv = 2.5 and the other where the Cv = 3.0, the latter valve will have less of a pressure drop. The higher the number, the lower the pressure drop.

That makes sense, doesn’t it? With the first valve, you get a 1-psi drop in pressure with just 2.5 gpm flowing. The second valve can flow a full 3 gpm before the water suffers that same 1-psi pressure drop.

So if I were choosing between those two TRVs for my diverter-tee system, I’d probably choose the second valve because it has a higher Cv number, which means it offers less resistance to flow. I don’t want the valve, when fully open and just sitting there, to present my flow with so much resistance that the flow just shrugs, gives me a dirty look and stops.

Remember: Where there is no flow, there is no heat. I hope you won’t have to learn that the way I learned it.

Learning the hard way

TRVs, when cared for, last a long time. They’re so simple in design. The bellows sometimes comes with a slender remote sensor that sits out in the air and feels the temperature. We use these when the radiator is inside a cabinet. A built-in sensor isn’t as good for this application because it feels the heat inside the cabinet and closes the TRV before the room can get up to the set temperature. This causes most contractors to curse the TRV manufacturer.

But now consider the installer, who may not be a contractor. The installer may be a handyman or the building superintendent. This person may decide to mount that crucial, room-air-temperature sensor right on top of the radiator’s element. How come? To protect the sensor, of course. I have memories of some delicious, building-wide, no-heat situations caused by this. Wish you were there.

I’ve also seen handymen and building superintendents jam the TRV sensors between the fins of the heating elements. That’s to hold them in place. Hey, that sensor’s liable to slip off if you just put it on top of the element. You have to be creative. Ever see a TRV remote sensor attached to a radiator element with Krazy Glue?

Superintendents will jam a TRV’s sensor under a rug or a flap of linoleum. Again, this is to keep the sensor safe - and clean. Some have mounted the sensors on the radiator’s supply pipe. That keeps them stable. They also will place the sensors precisely along that uncaulked crack between the floor and the wall. The low-bid building contractor left that crack as his legacy. This crack is the place where, in many older buildings, Mr. Breezy slips in whenever the exhaust fans starts. No heat? Hmmm.

But enough about handymen and superintendents. Even professional heating contractors sometimes make mistakes when they snap those operators onto the valve bodies. You have to position the valve operator just so, and that’s often tough when you’re twisted like a yogi under the radiator and sweat is running into your eyes.

If you tilt the operator too much, the valve body’s stem won’t align with the part of the operator that’s designed to receive it. They slip by each other, and from your position on the floor, you can’t tell that the marriage wasn’t consummated. You wind up with a valve body that’s forever open. But everything looks fine from floor level. And when the room goes to 90°, we line up to curse the TRV manufacturers.

Make sure you’re consummating that marriage.

And while we’re troubleshooting, let’s remember that engineers, too, sometimes have bad days. I once looked at a problem job on Long Island where an engineer had specified TRVs for a perimeter loop in an office building. This guy called for 1 1/2-in., commercial, fin-tube baseboard and a TRV in every office. The trouble was he didn’t specify bypass lines from one office to the next. Only the woman in the first office was comfortable; everyone else shivered.

And then there was that memorable day when the contractor installed about 700 TRVs in this hot-water-heated Manhattan co-op. This was a two-pipe system. The engineer told the shareholders the TRVs would balance the temperature and improve their level of comfort significantly.

The contractor started the job, and the valves went to work. As the rooms got warm, the TRVs began to throttle, and as they did, they increased the resistance to flow. This shoved the big, base-mounted pump backward on its performance curve. As you reduce flow on a constant-speed pump, you also increase head pressure. This particular pump, which was big enough to have a saddle, clawed its way backward up that pump curve. It got to a point where its pent-up power shoved open all the TRVs in the building.

Seven hundred brand-new TRVs and the building was overheating.

It hadn’t occurred to the engineer to check to see if his new TRVs were going to be compatible with the existing pump. As time went by, we all came to appreciate 1750-rpm, flat-curve pumps that could shed load without building much pressure.

These days, we appreciate smart circulators and differential-pressure regulators for the same reason. As TRVs close, smart circulators slow down, and differential-pressure regulators open up. Choose either option and you won’t get that big buildup in pressure at the TRVs.

So much to consider. So much to learn.

Links

  • Contact Plumbing & Mechanical
  • Follow PM on Twitter!
KEYWORDS: hydronic heat steam heat

Share This Story

Looking for a reprint of this article?
From high-res PDFs to custom plaques, order your copy today!

Holohan

Dan Holohan and his wife, Marianne, founded www.heatinghelp.com in 1997. You can reach Dan Holohan at dan@heatinghelp.com. He loves hearing from you!

Recommended Content

JOIN TODAY
to unlock your recommendations.

Already have an account? Sign In

  • Worker using the Milwaukee Tool SWITCH PACK drain cleaner

    Pipeline profits: Drain cleaning, pipe inspection create opportunities

    Drain cleaning and inspection services offer lucrative...
    Green Plumbing and Mechanical
    By: Nicole Krawcke
  • Uponor employee, Arturo Moreno

    The reinvestment in American manufacturing and training

    Plumbing & Mechanical Chief Editor Nicole Krawcke and...
    Plumbing News
    By: Nicole Krawcke and Natalie Forster
  • March 2024 Women in Plumbing hero image of woman engineer overlayed by circle of hexagon shapes with numbers from 1 to 10

    Celebrating 10 Influential Women in the Plumbing Industry

    Celebrating Women's History Month and Women in...
    Plumbing News
    By: Nicole Krawcke
Subscribe For Free!
  • eNewsletters
  • Online Registration
  • Subscription Customer Service
  • eMagazine
  • Manage My Preferences

Bell & Gossett Illustrates Path to Net-zero at AHR Expo

Bell & Gossett Illustrates Path to Net-zero at AHR Expo

AI can boost efficiency and profitability for plumbing, HVAC contractors

AI can boost efficiency and profitability for plumbing, HVAC contractors

NIBCO Press Solutions

NIBCO Press Solutions

IPEX celebrates grand opening of new Florida distribution center

IPEX celebrates grand opening of new Florida distribution center

More Videos

Sponsored Content

Sponsored Content is a special paid section where industry companies provide high quality, objective, non-commercial content around topics of interest to the Plumbing & Mechanical audience. All Sponsored Content is supplied by the advertising company and any opinions expressed in this article are those of the author and not necessarily reflect the views of Plumbing & Mechanical or its parent company, BNP Media. Interested in participating in our Sponsored Content section? Contact your local rep!

close
  • J.J. Keller CMV vehicles on road
    Sponsored byJ. J. Keller & Associates, Inc.

    The dash cam game-changer for small business safety

Popular Stories

Figure 1 is a sketch of the flow problems of the current plumbing system.

Hydronic heating glitch solved: Why adding a circulator won't fix primary loop flow issue

The interior of a government building.

President Trump signs executive order promoting skilled trades and apprenticeships

Underfloor heating installation with drain sewer hole in bathroom close up on water floor heating.

Using hydronics to leverage time-of-use electrical rates

PM BEMIS June 25 Free Webinar: Optimizing Plumbing Solutions for Single-Family, Multi-Family & Public Spaces

Events

November 13, 2024

Future Proofing MEP: Navigating the 2026 High Efficiency Water Heating Standards

Join our deep dive into DOE’s new standards so you can future-proof your MEP practice.

EARN: 0.1 ASPE CEU; 1 AIA LU/HSW; 0.1 IACET CEU*; 1 PDH

View All Submit An Event

Poll

Will business be up or down in 2025?

Do you anticipate business in 2025 to be up or down in comparison to 2024?
View Results Poll Archive

Products

The Water Came To A Stop

The Water Came To A Stop

See More Products

Download the FREE Water Conservation, Quality & Safety eBook: Plumbing Trends Increasing Safe Water Availability

Related Articles

  • The General Society of Mechanics and Tradesmen of the City of New York has a unique home

    The General Society of Mechanics and Tradesmen of the City of New York has a unique home

    See More
  • The power of hydrogen

    See More
  • Holohan

    The origins of the British thermal unit

    See More

Events

View AllSubmit An Event
  • August 26, 2014

    Free Webinar: Low Temperature Heat Emitter Options in Hydronic Systems

    With proper design, you can create systems that require supply water temperatures no higher than 120° F under design load conditions.
  • June 13, 2016

    Advanced Radiant Design with Mark Eatherton

    This course drills deep into the engineering aspects of tube length, tube center density, tube size and other factors affecting hydronic radiant heating systems.
View AllSubmit An Event
×

Keep your content unclogged with our newsletters!

Stay in the know on the latest plumbing & piping industry trends.

JOIN TODAY!
  • RESOURCES
    • Advertise
    • Contact Us
    • Directories
    • Store
    • Want More
    • Supply House Times
  • SIGN UP TODAY
    • Create Account
    • eMagazine
    • eNewsletter
    • Customer Service
    • Manage Preferences
  • SERVICES
    • Marketing Services
    • Reprints
    • Market Research
    • List Rental
    • Survey/Respondent Access
  • STAY CONNECTED
    • LinkedIn
    • Facebook
    • Instagram
    • YouTube
    • X (Twitter)
  • PRIVACY
    • PRIVACY POLICY
    • TERMS & CONDITIONS
    • DO NOT SELL MY PERSONAL INFORMATION
    • PRIVACY REQUEST
    • ACCESSIBILITY

Copyright ©2025. All Rights Reserved BNP Media.

Design, CMS, Hosting & Web Development :: ePublishing

search
cart
facebook instagram twitter linkedin youtube
  • Sign In
  • Create Account
  • Sign Out
  • My Account
  • NEWS
  • PRODUCTS
  • CONTRACTORS
    • BATH & KITCHEN PRO
    • BUSINESS MANAGEMENT
    • HIGH EFFICIENCY HOMES
    • TECHNOLOGY
    • WATER TREATMENT
    • PMC COLUMNS
      • Dave Yates: Contractor’s Corner
      • John Siegenthaler: Hydronics Workshop
      • Kenny Chapman: The Blue Collar Coach
      • Matt Michel: Service Plumbing Pros
      • Scott Secor: Heating Perceptions
  • ENGINEERS
    • CONTINUING EDUCATION
    • DECARBONIZATION | ELECTRIFICATION
    • FIRE PROTECTION
    • GEOTHERMAL | SOLAR THERMAL
    • PIPING | PLUMBING | PVF
    • PME COLUMNS
      • Christoph Lohr: Strategic Plumbing Insights
      • David Dexter: Plumbing Talking Points
      • James Dipping: Engineer Viewpoints
      • John Seigenthaler: Renewable Heating Design
      • Lowell Manalo: Plumbing Essentials
      • Misty Guard: Guard on Compliance
  • RADIANT & HYDRONICS
    • RADIANT COMFORT REPORT
    • THE GLITCH & THE FIX
  • INSIGHTS
    • CODES
    • GREEN PLUMBING & MECHANICAL
    • PROJECT PROFILES
    • COLUMNS
      • Codes Corner
      • Natalie Forster: Editorial Opinion
      • Guest Editorial
    • SPONSOR INSIGHTS
  • MEDIA
    • PODCASTS
    • VIDEOS
    • WEBINARS
  • RESOURCES
    • INDUSTRY CALENDAR
    • DIRECTORIES
    • EBOOKS
    • PM BOOKSTORE
    • CE CENTER
    • MARKET RESEARCH
    • CLASSIFIEDS
  • EMAGAZINE
    • EMAGAZINE
    • ARCHIVE ISSUES
    • CONTACT
    • ADVERTISE
    • PME EMAGAZINE ARCHIVES
  • SIGN UP!