• Sign In
  • Create Account
  • Sign Out
  • My Account
  • NEWS
  • PRODUCTS
  • CONTRACTORS
  • ENGINEERS
  • RADIANT & HYDRONICS
  • INSIGHTS
  • MEDIA
  • RESOURCES
  • EMAGAZINE
  • SIGN UP!
cart
facebook instagram twitter linkedin youtube
  • CONTRACTORS
  • BATH & KITCHEN PRO
  • BUSINESS MANAGEMENT
  • HIGH EFFICIENCY HOMES
  • TECHNOLOGY
  • WATER TREATMENT
  • PMC COLUMNS
  • PMC COLUMNS
  • Dave Yates: Contractor’s Corner
  • John Siegenthaler: Hydronics Workshop
  • Kenny Chapman: The Blue Collar Coach
  • Matt Michel: Service Plumbing Pros
  • Scott Secor: Heating Perceptions
  • ENGINEERS
  • CONTINUING EDUCATION
  • DECARBONIZATION | ELECTRIFICATION
  • FIRE PROTECTION
  • GEOTHERMAL | SOLAR THERMAL
  • PIPING | PLUMBING | PVF
  • PME COLUMNS
  • PME COLUMNS
  • Christoph Lohr: Strategic Plumbing Insights
  • David Dexter: Plumbing Talking Points
  • James Dipping: Engineer Viewpoints
  • John Seigenthaler: Renewable Heating Design
  • Lowell Manalo: Plumbing Essentials
  • Misty Guard: Guard on Compliance
  • RADIANT & HYDRONICS
  • RADIANT COMFORT REPORT
  • THE GLITCH & THE FIX
  • INSIGHTS
  • CODES
  • GREEN PLUMBING & MECHANICAL
  • PROJECT PROFILES
  • COLUMNS
  • SPONSOR INSIGHTS
  • COLUMNS
  • Codes Corner
  • Natalie Forster: Editorial Opinion
  • Guest Editorial
  • MEDIA
  • PODCASTS
  • VIDEOS
  • WEBINARS
  • RESOURCES
  • INDUSTRY CALENDAR
  • DIRECTORIES
  • EBOOKS
  • PM BOOKSTORE
  • CE CENTER
  • MARKET RESEARCH
  • CLASSIFIEDS
  • EMAGAZINE
  • EMAGAZINE
  • ARCHIVE ISSUES
  • CONTACT
  • ADVERTISE
  • PME EMAGAZINE ARCHIVES
search
cart
facebook instagram twitter linkedin youtube
  • Sign In
  • Create Account
  • Sign Out
  • My Account
  • NEWS
  • PRODUCTS
  • CONTRACTORS
    • BATH & KITCHEN PRO
    • BUSINESS MANAGEMENT
    • HIGH EFFICIENCY HOMES
    • TECHNOLOGY
    • WATER TREATMENT
    • PMC COLUMNS
      • Dave Yates: Contractor’s Corner
      • John Siegenthaler: Hydronics Workshop
      • Kenny Chapman: The Blue Collar Coach
      • Matt Michel: Service Plumbing Pros
      • Scott Secor: Heating Perceptions
  • ENGINEERS
    • CONTINUING EDUCATION
    • DECARBONIZATION | ELECTRIFICATION
    • FIRE PROTECTION
    • GEOTHERMAL | SOLAR THERMAL
    • PIPING | PLUMBING | PVF
    • PME COLUMNS
      • Christoph Lohr: Strategic Plumbing Insights
      • David Dexter: Plumbing Talking Points
      • James Dipping: Engineer Viewpoints
      • John Seigenthaler: Renewable Heating Design
      • Lowell Manalo: Plumbing Essentials
      • Misty Guard: Guard on Compliance
  • RADIANT & HYDRONICS
    • RADIANT COMFORT REPORT
    • THE GLITCH & THE FIX
  • INSIGHTS
    • CODES
    • GREEN PLUMBING & MECHANICAL
    • PROJECT PROFILES
    • COLUMNS
      • Codes Corner
      • Natalie Forster: Editorial Opinion
      • Guest Editorial
    • SPONSOR INSIGHTS
  • MEDIA
    • PODCASTS
    • VIDEOS
    • WEBINARS
  • RESOURCES
    • INDUSTRY CALENDAR
    • DIRECTORIES
    • EBOOKS
    • PM BOOKSTORE
    • CE CENTER
    • MARKET RESEARCH
    • CLASSIFIEDS
  • EMAGAZINE
    • EMAGAZINE
    • ARCHIVE ISSUES
    • CONTACT
    • ADVERTISE
    • PME EMAGAZINE ARCHIVES
  • SIGN UP!
ColumnsJohn Siegenthaler: Hydronics Workshop

HYDRONICS WORKSHOP

John Siegenthaler: The 'net' effect

Air-to-water and water-to-water heat pumps are destined to claim increasing market share in future hydronic systems.

By John Siegenthaler, P.E.
Maximize-net-COP-reduce-operating-cost
October 28, 2021

The Coefficient of Performance (COP) of a heat pump is essentially the same concept as the thermal efficiency of a boiler (e.g., the desirable output divided by the necessary input). For a heat pump, this would be the rate of heat output from the heat pump divided by the rate of energy input (as electricity) to operate the heat pump.

Consider, for example, a heat pump that releases 48,000 Btu/h to the load, while drawing 4,500 watts of electrical power. Its COP could be calculated as shown in Formula 1.


FORMULA 1
FORMULA 1

The number 3.413 in the lower part of the fraction just converts watts — the common unit for electrical power — into Btu/h. The units of watts, shown in red in two locations in Formula 1, cancel each other out. So do the units Btu/h, shown in blue. This makes the COP a “pure number” (e.g., without any units).

One can think of the COP of a heat pump as a multiplying factor. The energy output rate of a heat pump is the energy input rate multiplied by the COP. It can also be thought of a multiplier for the rate of heat output from the heat pump relative to the rate of heat output from any electrical resistance heater operating at the same input wattage.

The higher the heat pump’s COP, the greater the rate of heat output for a given rate of energy input. Or, stated in other terms, the higher the COP, the lower the electrical energy input for a given rate of heat output. Maintaining operating conditions that allow for the highest possible COP is a foremost design consideration when applying any heat pump.

‘Test Stand’ COPs

The performance data given by most air-to-water and water-to-water heat pump manufacturers doesn’t count the electrical power required to operate a circulator to move water through the heat pump.

For a water-to-water heat pump, which is typically used in a geothermal system, there are a least two circulators required: One to create flow through the geothermal earth loop, and another to create flow between the heat pump and a buffer tank or hydraulic separator. In some systems, two or more circulators are sometimes connected in series to move flow through an earth loop with high flow resistance.

For an air-to-water heat pump, one circulator is required to move flow between the heat pump and a buffer tank or hydraulic separator.

In either case, these circulators must operate whenever the heat pump’s compressor is running.

The system’s owner must pay for the electrical energy to operate the heat pump compressor, as well as to operate these circulators. There is no way around this. Thus, it’s appropriate to define a “net” COP that includes the electrical energy supplied to the heat pump’s compressor as well as any circulator(s) that must operate to shuttle energy through the heat pump. The net COP is a performance index that more accurately reflects the true operating cost of a heat pump in a hydronic application.

Consider the diagram shown in Figure 1.


Figure 1
FIGURE 1

This is a simple “energy balance” depiction of a heat pump. Energy from some lower temperature “free” source material (.e.g., ground heat or outside air) flows into the heat pump on the left. It’s represented by the symbol Qin.

Electrical energy flows into the top of the heat pump to operate it. It’s represented by the symbol Ein.

The heat output from the heat pump is called Qout.

Based on the principle of conservation of energy, and assuming steady state conditions, the rate of energy flowing into the heat pump must equal the rate of energy leaving the heat pump. Thus: Qout = Qin + Ein.

The heat pump’s COP is just Qout divided by Ein, when both are expressed in the same units of Btu/h.


FORMULA 2
FORMULA 2

Toss in the circulator(s)

Next, consider the diagram in Figure 2, which represents an air-to-water heat pump and a circulator used to create the water flow that carries heat out of the heat pump.


FIGURE 2
FIGURE 2

Since the circulator is almost always mounted within the thermal envelope of the building heated by the heat pump, the electrical power it uses is ultimately converted to heat, and as such adds (slightly) to the total heat supplied to the building.

The net COP of the heat pump plus circulator, considered as a group, would be the total heat transferred to the building divided by the total electrical power input. It can be calculated using Formula 3:


FORMULA 3
FORMULA 3

By combining Formulas 2 and 3, it’s possible to express the net COP based on the COP of the heat pump as tested, the electrical power supplied to the circulator (in watts) and the heat output from the heat pump.


FORMULA 4
FORMULA 4

The net effect

The net COP is a truer indicator of the relative merit of a heat pump system, vs. the concept of a heat pump operating, in isolation, on a test stand. In the latter case, some “other device” is pushing flow through the heat pump as its being tested. The power to run that “other device” is not being accounted for. However, an owner doesn’t have the luxury of an “other device” pushing flow through their heat pump for free.

Let’s put some simple numbers into Formula 4. Consider a heat pump on a test stand that, at some specific operating condition, puts out 48,000 Btu/h, while maintaining a COP of 3.0. Next, consider the power input needed to run a load circulator in a real installation of this heat pump. If that circulator required 200 watts of power input, the net COP of the heat pump + circulator, considered as a group, would be:


Equation

As the power input of the circulator increases and the other conditions (48,000 Btu/h output and COP = 3) remain the same, the net COP drops, as shown in Figure 3.


FIGURE 3
FIGURE 3

When applying Formula 4 to a water-to-water heat pump, be sure to include the power to all circulators that operate when the heat pump is running (e.g., those for the earth loop and between heat pump and either a buffer tank or hydraulic separator).

If you like spreadsheets, just set up a simple one for Formula 4 and “experiment” with different heat pump heating capacities, test stand COPs and circulator power inputs.

The takeaway

Although it’s probably intuitive to most readers, the greater the power input to the circulators required to operate a heat pump in a hydronic system, the lower the heat pump’s net COP, and thus, the more expensive the system is to operate.

Given the abundance of high-efficiency ECM circulators now on the market, it makes sense to select one that can supply the necessary flow rate through the heat pump (generally recommended as 2 to 3 gpm per ton [1 ton equals 12,000 Btu/h] of heating capacity), while operating at the lowest possible wattage. Doing so maximizes the net COP of the system and reduces the operating cost to the owner.

It’s also important to remember that the COP of a heat pump is very dependent on the temperatures of the source material and the load to which heat is being sent. The lower the load temperature can be, the higher the heat pump’s COP. Low-temperature high-efficiency distribution systems are always desirable when a heat pump serves as the heat source.

Both air-to-water and water-to-water heat pumps are destined to claim increasing market share in future hydronic systems. It only makes sense to apply them with “best-in-class” peripherals such as high efficiency circulators.


Formulas and figures by John Siegenthaler. Illustration: treety/iStock / Getty Images Plus via Getty Images.


KEYWORDS: energy efficiency heat pumps hydronic industry plumbers and pipefitters

Share This Story

Looking for a reprint of this article?
From high-res PDFs to custom plaques, order your copy today!

Siegenthaler

John Siegenthaler, P.E., is a consulting engineer and principal of Appropriate Designs in Holland Patent, New York. In partnership with HeatSpring, he has developed several online courses that provide in-depth, design-level training in modern hydronics systems, air-to-water heat pumps and biomass boiler systems. Additional information and resources for hydronic system design are available on Siegenthaler’s website,  www.hydronicpros.com.

Recommended Content

JOIN TODAY
to unlock your recommendations.

Already have an account? Sign In

  • Worker using the Milwaukee Tool SWITCH PACK drain cleaner

    Pipeline profits: Drain cleaning, pipe inspection create opportunities

    Drain cleaning and inspection services offer lucrative...
    Green Plumbing and Mechanical
    By: Nicole Krawcke
  • Uponor employee, Arturo Moreno

    The reinvestment in American manufacturing and training

    Plumbing & Mechanical Chief Editor Nicole Krawcke and...
    Plumbing News
    By: Nicole Krawcke and Natalie Forster
  • March 2024 Women in Plumbing hero image of woman engineer overlayed by circle of hexagon shapes with numbers from 1 to 10

    Celebrating 10 Influential Women in the Plumbing Industry

    Celebrating Women's History Month and Women in...
    Plumbing News
    By: Nicole Krawcke
Subscribe For Free!
  • eNewsletters
  • Online Registration
  • Subscription Customer Service
  • eMagazine
  • Manage My Preferences

AI can boost efficiency and profitability for plumbing, HVAC contractors

AI can boost efficiency and profitability for plumbing, HVAC contractors

NIBCO Press Solutions

NIBCO Press Solutions

IPEX celebrates grand opening of new Florida distribution center

IPEX celebrates grand opening of new Florida distribution center

Bell & Gossett Illustrates Path to Net-zero at AHR Expo

Bell & Gossett Illustrates Path to Net-zero at AHR Expo

More Videos

Sponsored Content

Sponsored Content is a special paid section where industry companies provide high quality, objective, non-commercial content around topics of interest to the Plumbing & Mechanical audience. All Sponsored Content is supplied by the advertising company and any opinions expressed in this article are those of the author and not necessarily reflect the views of Plumbing & Mechanical or its parent company, BNP Media. Interested in participating in our Sponsored Content section? Contact your local rep!

close
  • J.J. Keller CMV vehicles on road
    Sponsored byJ. J. Keller & Associates, Inc.

    The dash cam game-changer for small business safety

Popular Stories

Underfloor heating installation with drain sewer hole in bathroom close up on water floor heating.

Using hydronics to leverage time-of-use electrical rates

Watts Nexa mobile image

Behind the Wall: Where smart plumbing gets smarter

Six tankless water heaters that feed the nutraceutical manufacturer’s operations.

How to deliver large volumes of hot water quickly and intermittently

PMCE Home-X April 29 Free Webinar: From Legacy to Leadership: Preparing Your Home Services Business for the Next Generation

Events

November 13, 2024

Future Proofing MEP: Navigating the 2026 High Efficiency Water Heating Standards

Join our deep dive into DOE’s new standards so you can future-proof your MEP practice.

EARN: 0.1 ASPE CEU; 1 AIA LU/HSW; 0.1 IACET CEU*; 1 PDH

View All Submit An Event

Poll

Will business be up or down in 2025?

Do you anticipate business in 2025 to be up or down in comparison to 2024?
View Results Poll Archive

Products

The Water Came To A Stop

The Water Came To A Stop

See More Products

Download the FREE Water Conservation, Quality & Safety eBook: Plumbing Trends Increasing Safe Water Availability

Related Articles

  • Siegenthaler PM

    John Siegenthaler: 5 products the hydronics industry needs

    See More
  • Siegenthaler PM

    John Siegenthaler: 5 more products the hydronics industry needs

    See More
  • Siegenthaler PM

    John Siegenthaler: Modern biomass meets state-of-the-art hydronics

    See More
×

Keep your content unclogged with our newsletters!

Stay in the know on the latest plumbing & piping industry trends.

JOIN TODAY!
  • RESOURCES
    • Advertise
    • Contact Us
    • Directories
    • Store
    • Want More
    • Supply House Times
  • SIGN UP TODAY
    • Create Account
    • eMagazine
    • eNewsletter
    • Customer Service
    • Manage Preferences
  • SERVICES
    • Marketing Services
    • Reprints
    • Market Research
    • List Rental
    • Survey/Respondent Access
  • STAY CONNECTED
    • LinkedIn
    • Facebook
    • Instagram
    • YouTube
    • X (Twitter)
  • PRIVACY
    • PRIVACY POLICY
    • TERMS & CONDITIONS
    • DO NOT SELL MY PERSONAL INFORMATION
    • PRIVACY REQUEST
    • ACCESSIBILITY

Copyright ©2025. All Rights Reserved BNP Media.

Design, CMS, Hosting & Web Development :: ePublishing

search
cart
facebook instagram twitter linkedin youtube
  • Sign In
  • Create Account
  • Sign Out
  • My Account
  • NEWS
  • PRODUCTS
  • CONTRACTORS
    • BATH & KITCHEN PRO
    • BUSINESS MANAGEMENT
    • HIGH EFFICIENCY HOMES
    • TECHNOLOGY
    • WATER TREATMENT
    • PMC COLUMNS
      • Dave Yates: Contractor’s Corner
      • John Siegenthaler: Hydronics Workshop
      • Kenny Chapman: The Blue Collar Coach
      • Matt Michel: Service Plumbing Pros
      • Scott Secor: Heating Perceptions
  • ENGINEERS
    • CONTINUING EDUCATION
    • DECARBONIZATION | ELECTRIFICATION
    • FIRE PROTECTION
    • GEOTHERMAL | SOLAR THERMAL
    • PIPING | PLUMBING | PVF
    • PME COLUMNS
      • Christoph Lohr: Strategic Plumbing Insights
      • David Dexter: Plumbing Talking Points
      • James Dipping: Engineer Viewpoints
      • John Seigenthaler: Renewable Heating Design
      • Lowell Manalo: Plumbing Essentials
      • Misty Guard: Guard on Compliance
  • RADIANT & HYDRONICS
    • RADIANT COMFORT REPORT
    • THE GLITCH & THE FIX
  • INSIGHTS
    • CODES
    • GREEN PLUMBING & MECHANICAL
    • PROJECT PROFILES
    • COLUMNS
      • Codes Corner
      • Natalie Forster: Editorial Opinion
      • Guest Editorial
    • SPONSOR INSIGHTS
  • MEDIA
    • PODCASTS
    • VIDEOS
    • WEBINARS
  • RESOURCES
    • INDUSTRY CALENDAR
    • DIRECTORIES
    • EBOOKS
    • PM BOOKSTORE
    • CE CENTER
    • MARKET RESEARCH
    • CLASSIFIEDS
  • EMAGAZINE
    • EMAGAZINE
    • ARCHIVE ISSUES
    • CONTACT
    • ADVERTISE
    • PME EMAGAZINE ARCHIVES
  • SIGN UP!