search
cart
facebook instagram twitter linkedin youtube
  • Sign In
  • Create Account
  • Sign Out
  • My Account
  • NEWS
  • PRODUCTS
  • CONTRACTORS
    • BATH & KITCHEN PRO
    • BUSINESS MANAGEMENT
    • HIGH EFFICIENCY HOMES
    • TECHNOLOGY
    • WATER TREATMENT
    • PMC COLUMNS
      • Dave Yates: Contractor’s Corner
      • John Siegenthaler: Hydronics Workshop
      • Kenny Chapman: The Blue Collar Coach
      • Matt Michel: Service Plumbing Pros
      • Scott Secor: Heating Perceptions
  • ENGINEERS
    • CONTINUING EDUCATION
    • DECARBONIZATION | ELECTRIFICATION
    • FIRE PROTECTION
    • GEOTHERMAL | SOLAR THERMAL
    • PIPING | PLUMBING | PVF
    • PME COLUMNS
      • Christoph Lohr: Strategic Plumbing Insights
      • David Dexter: Plumbing Talking Points
      • James Dipping: Engineer Viewpoints
      • John Seigenthaler: Renewable Heating Design
      • Lowell Manalo: Plumbing Essentials
      • Misty Guard: Guard on Compliance
  • RADIANT & HYDRONICS
    • RADIANT COMFORT REPORT
    • THE GLITCH & THE FIX
  • INSIGHTS
    • CODES
    • GREEN PLUMBING & MECHANICAL
    • PROJECT PROFILES
    • COLUMNS
      • Codes Corner
      • Natalie Forster: Editorial Opinion
      • Guest Editorial
    • SPONSOR INSIGHTS
  • MEDIA
    • PODCASTS
    • VIDEOS
    • WEBINARS
  • RESOURCES
    • INDUSTRY CALENDAR
    • DIRECTORIES
    • EBOOKS
    • PM BOOKSTORE
    • CE CENTER
    • MARKET RESEARCH
    • CLASSIFIEDS
  • EMAGAZINE
    • EMAGAZINE
    • ARCHIVE ISSUES
    • CONTACT
    • ADVERTISE
    • PME EMAGAZINE ARCHIVES
  • SIGN UP!
Radiant & HydronicsThe Glitch & The Fix

Modified primary/secondary hydronic piping system

March 2016 The Glitch and The Fix

By John Siegenthaler, P.E.
March 2016 The Glitch and The Fix -- Glitch drawing

Glitch drawing: An installer wants to achieve hydraulic separation between three zone circulators. He also wants to have the same supply water temperature to each zone, so he pipes up what he calls a “modified primary/secondary system,” as shown in the drawing above. Graphics credit: John Siegenthaler, P.E.

March 2016 The Glitch and The Fix -- Fix drawing 1

Fix drawing 1: Assume the first zone circulator was operational at a flow rate of 10 gal. per min., the second zone circulator was off and the third zone circulator was operating at 4 gpm. Also assume that the flow rate created by the primary circulator was 15 gpm. Graphics credit: John Siegenthaler, P.E.

March 2016 The Glitch and The Fix -- Fix drawing 2

Fix drawing 2: Keep all three zone flow rates the same, but reduce the primary flow rate from 15 gpm to 8 gpm. The result is shown above. Graphics credit: John Siegenthaler, P.E.

March 2016 The Glitch and The Fix -- Fix drawing 3

Fix drawing 3: The bottom line is that you can’t rely on the piping arrangement to produce acceptable results in all cases — unless you blast water around the primary loop at high flows. A simple solution is to install a hydraulic separator between the boiler and distribution circuits, as shown above. Graphics credit: John Siegenthaler, P.E.

March 2016 The Glitch and The Fix -- Glitch drawing
March 2016 The Glitch and The Fix -- Fix drawing 1
March 2016 The Glitch and The Fix -- Fix drawing 2
March 2016 The Glitch and The Fix -- Fix drawing 3
March 18, 2016

The Glitch

An installer wants to achieve hydraulic separation between three zone circulators. He also wants to have the same supply water temperature to each zone. He pipes up what he calls a “modified primary/secondary system,” as shown in the Glitch drawing above. His rationale is that since all the zone returns are downstream of the zone supplies, each supply will have the same supply water temperature.

Can you think of a situation where this will work? How about where it will not work?

The Fix

Each zone will get the same supply water temperature if and only if the flow rate created by the primary circulator is greater than the total of all the active zone flow rates.

For example, assume the first zone circulator was operational at a flow rate of 10 gal. per min., the second zone circulator was off and the third zone circulator was operating at 4 gpm. Also assume that the flow rate created by the primary circulator was 15 gpm. This would produce the result shown in the Fix 1 drawing above. All zones would be receiving water at the same temperature.

Now, keep all three zone flow rates the same, but reduce the primary flow rate from 15 gpm to 8 gpm. The result is shown in Fix 2 drawing above.

Notice that the flow between the third and fourth tee has reversed. This is the only possible scenario since the flow entering any portion of the system has to be the same as the flow leaving that portion of the system.

The water “doesn’t care” that it is flowing backwards, but you should. That’s because there will be no heated water entering zone No. 3, and the flow sent into zone No. 1 will be mixed (eight parts heated water with two parts return water). This will obviously have detrimental effects on the heat delivery of these zones.

There are many other possibilities for what might happen based on assumptions for the primary loop flow rate and the combined zone flow rates. The bottom line is that you can’t rely on this piping arrangement to produce acceptable results in all cases — unless you blast water around the primary loop at high flows (e.g., always keeping the primary flow rate greater than what the total zone flow rates might be).

The latter is possible but it’s also wasteful. It requires larger circulators and larger piping, and could result in hundreds of dollars’ worth of unnecessary pumping energy use over the life of the system.
There are several ways to correct this situation. One of the simplest is to install a hydraulic separator between the boiler and distribution circuits, as shown in the Fix 3 drawing.

This arrangement ensures equal supply water temperature to all zones under all circumstances. The hydraulic separator also replaces the high-performance air separator and provides dirt separation for the system.

Keep in mind that the boiler circuit flow rate does not have to equal or exceed the total zone flow rate. My suggestion is to select a boiler flow rate that’s relatively wide —perhaps 30° F or more, provided that the boiler is compatible with that flow rate and the return water temperature to the boiler stays above the dew point of the flue gases. A boiler inlet temperature of 130° is generally sufficient for the latter.

Download a pdf of the March 2016 The Glitch and The Fix.

This originally appeared as "'Modified' primary/secondary" in the March 2016 issue of Plumbing & Mechanical.

KEYWORDS: hydronic controls hydronic system design incorrect design schematic layout

Share This Story

Looking for a reprint of this article?
From high-res PDFs to custom plaques, order your copy today!

Siegenthaler

John Siegenthaler, P.E., is a consulting engineer and principal of Appropriate Designs in Holland Patent, New York. In partnership with HeatSpring, he has developed several online courses that provide in-depth, design-level training in modern hydronics systems, air-to-water heat pumps and biomass boiler systems. Additional information and resources for hydronic system design are available on Siegenthaler’s website,  www.hydronicpros.com.

Recommended Content

JOIN TODAY
to unlock your recommendations.

Already have an account? Sign In

  • Worker using the Milwaukee Tool SWITCH PACK drain cleaner

    Pipeline profits: Drain cleaning, pipe inspection create opportunities

    Drain cleaning and inspection services offer lucrative...
    Green Plumbing and Mechanical
    By: Nicole Krawcke
  • Uponor employee, Arturo Moreno

    The reinvestment in American manufacturing and training

    Plumbing & Mechanical Chief Editor Nicole Krawcke and...
    Plumbing News
    By: Nicole Krawcke and Natalie Forster
  • March 2024 Women in Plumbing hero image of woman engineer overlayed by circle of hexagon shapes with numbers from 1 to 10

    Celebrating 10 Influential Women in the Plumbing Industry

    Celebrating Women's History Month and Women in...
    Plumbing News
    By: Nicole Krawcke
Manage My Account
  • eNewsletters
  • Online Registration
  • Subscription Customer Service
  • eMagazine
  • Manage My Preferences

More Videos

Sponsored Content

Sponsored Content is a special paid section where industry companies provide high quality, objective, non-commercial content around topics of interest to the Plumbing & Mechanical audience. All Sponsored Content is supplied by the advertising company and any opinions expressed in this article are those of the author and not necessarily reflect the views of Plumbing & Mechanical or its parent company, BNP Media. Interested in participating in our Sponsored Content section? Contact your local rep!

close
  • J.J. Keller CMV vehicles on road
    Sponsored byJ. J. Keller & Associates, Inc.

    The dash cam game-changer for small business safety

Popular Stories

Plumbing equpment parts and wrench on the white background close up.

Plumbing & Mechanical 2025 Plumbing Tools Survey

Latin American plumber fixing a toilet in the bathroom.

Troubleshooting common airflow plumbing issues

Empty modern room with large windows looking out onto a green lawn and trees.

Transitions: What do I do about cooling? (Part 1)

PM BEMIS June 25 Free Webinar: Optimizing Plumbing Solutions for Single-Family, Multi-Family & Public Spaces

Events

November 13, 2024

Future Proofing MEP: Navigating the 2026 High Efficiency Water Heating Standards

Join our deep dive into DOE’s new standards so you can future-proof your MEP practice.

EARN: 0.1 ASPE CEU; 1 AIA LU/HSW; 0.1 IACET CEU*; 1 PDH

View All Submit An Event

Poll

Will business be up or down in 2025?

Do you anticipate business in 2025 to be up or down in comparison to 2024?
View Results Poll Archive

Products

The Water Came To A Stop

The Water Came To A Stop

See More Products

Download the FREE Water Conservation, Quality & Safety eBook: Plumbing Trends Increasing Safe Water Availability

Related Articles

  • Primary/Secondary Piping: Back By Popular Demand

    See More
  • Primary/secondary/ thirdinary

    See More
  • Glitch drawing -- September 2015, The Glitch & The Fix

    Hydronic piping for district heating system

    See More

Related Products

See More Products
  • Residential_Hydronic_Heatin.gif

    Residential Hydronic Heating Systems Course

  • howcome.gif

    How Come? Hydronic heating questions we've been asking for 100 years (with straight answers!)

  • quick-basic-hy.gif

    Quick & Basic Hydronic Controls

See More Products
×

Keep your content unclogged with our newsletters!

Stay in the know on the latest plumbing & piping industry trends.

JOIN TODAY!
  • RESOURCES
    • Advertise
    • Contact Us
    • Directories
    • Store
    • Want More
    • Supply House Times
  • SIGN UP TODAY
    • Create Account
    • eMagazine
    • eNewsletter
    • Customer Service
    • Manage Preferences
  • SERVICES
    • Marketing Services
    • Reprints
    • Market Research
    • List Rental
    • Survey/Respondent Access
  • STAY CONNECTED
    • LinkedIn
    • Facebook
    • Instagram
    • YouTube
    • X (Twitter)
  • PRIVACY
    • PRIVACY POLICY
    • TERMS & CONDITIONS
    • DO NOT SELL MY PERSONAL INFORMATION
    • PRIVACY REQUEST
    • ACCESSIBILITY

Copyright ©2025. All Rights Reserved BNP Media.

Design, CMS, Hosting & Web Development :: ePublishing