search
cart
facebook instagram twitter linkedin youtube
  • Sign In
  • Create Account
  • Sign Out
  • My Account
  • NEWS
  • PRODUCTS
    • FEATURED PRODUCTS
  • CONTRACTORS
    • BATH & KITCHEN PRO
    • BUSINESS MANAGEMENT
    • HIGH EFFICIENCY HOMES
    • TECHNOLOGY
    • WATER TREATMENT
    • PMC COLUMNS
      • Dave Yates: Contractor’s Corner
      • John Siegenthaler: Hydronics Workshop
      • Kenny Chapman: The Blue Collar Coach
      • Matt Michel: Service Plumbing Pros
      • Scott Secor: Heating Perceptions
  • ENGINEERS
    • CONTINUING EDUCATION
    • DECARBONIZATION | ELECTRIFICATION
    • FIRE PROTECTION
    • GEOTHERMAL | SOLAR THERMAL
    • PIPING | PLUMBING | PVF
    • PME COLUMNS
      • Christoph Lohr: Strategic Plumbing Insights
      • David Dexter: Plumbing Talking Points
      • James Dipping: Engineer Viewpoints
      • John Seigenthaler: Renewable Heating Design
      • Lowell Manalo: Plumbing Essentials
      • Misty Guard: Guard on Compliance
  • RADIANT & HYDRONICS
    • RADIANT COMFORT REPORT
    • THE GLITCH & THE FIX
  • INSIGHTS
    • CODES
    • GREEN PLUMBING & MECHANICAL
    • PROJECT PROFILES
    • COLUMNS
      • Codes Corner
      • Natalie Forster: Editorial Opinion
      • Guest Editorial
  • MEDIA
    • EBOOKS
    • PODCASTS
    • VIDEOS
    • WEBINARS
  • RESOURCES
    • INDUSTRY CALENDAR
    • DIRECTORIES
    • PM BOOKSTORE
    • CE CENTER
    • MARKET RESEARCH
    • CLASSIFIEDS
  • EMAGAZINE
    • EMAGAZINE
    • ARCHIVE ISSUES
    • CONTACT
    • ADVERTISE
    • PME EMAGAZINE ARCHIVES
  • SIGN UP!
Plumbing & Mechanical Engineer Radiant & HydronicsThe Glitch & The FixGeothermal | Solar Thermal

Dubious solar hot water drainback

The Glitch & The Fix, October 2015

By John Siegenthaler, P.E.
October 14, 2015

The Glitch

Having heard the virtues of drainback freeze protection, an installer creates the system shown in the Glitch drawing above. He uses an unpressurized thermal storage tank, and carefully slopes all the collectors and collector array piping for 1/4 in. per ft. drop to ensure efficient drainage.

Can you spot several other details that will immediately (or eventually) lead to problems with this system?

The Fix

Do you remember what check valves are for? They stop reverse flow. The check valve that now comes installed in many hydronic circulators is going to prevent water from draining back down the collector supply pipe. The first hard freeze will likely rupture the absorber plates in the collectors.

The solution: Be absolutely sure there are no check valves in any piping that must carry flow in both directions.

It’s also not a good idea to use a cast-iron circulator in a piping assembly that directly connects to an unpressurized thermal storage tank. The dissolved oxygen level in the water will remain higher than in a closed-loop system and will quickly corrode the circulator.

Also notice that the circulator is barely below the water level in the tank. As such, it will have very little static pressure at its inlet and is likely to cavitate under most operating conditions.

The solution: Move the circulator as low as possible in the system to increase the static head at the circulator’s inlet port.

There was a time when squash plate fittings with elastomer gaskets were installed below the water level in unpressurized thermal storage tanks. In some cases they maintained a watertight seal for years. In other systems, no so much …

Can you afford to have 200+ gallons of water waiting to move through a seal that might last several years? Didn’t think so.

The solution: Use “gooseneck” piping as shown in the Fix drawing above.

All piping connects to the tank above the highest water level (accounting for thermal expansion of the water when heated). The squash plate fittings can still be used to minimize water vapor loss from the tank, but now they are not subject to static water pressure if their seals should eventually harden.

After passing through the upper side wall of the tank, the piping drops to collect water from the cooler, lower portion of the tank and route it to the collector array. Once this piping passes through the upper sidewall of the tank, it drops outside the tank to provide the maximum static head on the collector circulator.

Notice that a purging valve is installed to allow the air initially in the gooseneck piping to be flushed out using forced-water purging when the system is commissioned. Once this air is flushed, water will remain in the gooseneck piping.

Other incorrect detailing includes:

1. The piping returning from the collectors to the tank drops vertically downward into the tank. This will create a vertical flow jet that disrupts temperature stratification in the tank. All inlet piping to thermal storage tanks should terminate in a horizontal direction to minimize this internal mixing.

2. There is no way for air to enter the collector return piping and allow drainback. No air entry = no drainback. This is corrected by installing a tee with its side port open to the air space in the tank, and above the highest water level. Air will enter this port to initiate drainback whenever the collector circulator turns off.

3. The temperature sensor in the thermal storage tank should be located in the lower portion of the tank. This increases the “solar harvest” because it allows the differential temperature controller to turn the collector circulator on at lower temperatures (e.g., perhaps 8° to 10° F above the temperature in the lower portion of the tank).

4. The temperature sensor strapped to the piping at the outlet of the collector array will delay onset of collector circulator operation because it can only “feel” the temperature resulting from heat conducting along the (empty) piping between the collector absorber plate and the sensor location.

Drainback systems should have the collector temperature sensor mounted into a well that is brazed to the absorber plate. If no such well exists, a sensor with a flat “tongue” should be bolted directly to the absorber plate.

Download a pdf of the October 2015 The Glitch & The Fix.

KEYWORDS: incorrect design renewable energy systems schematic layout solar hot water

Share This Story

Looking for a reprint of this article?
From high-res PDFs to custom plaques, order your copy today!

John siegenthaler 200x200

John Siegenthaler, P.E., is a consulting engineer and principal of Appropriate Designs in Holland Patent, New York. In partnership with HeatSpring, he has developed several online courses that provide in-depth, design-level training in modern hydronics systems, air-to-water heat pumps and biomass boiler systems. Additional information and resources for hydronic system design are available on Siegenthaler’s website,  www.hydronicpros.com.

Recommended Content

JOIN TODAY
to unlock your recommendations.

Already have an account? Sign In

  • 2025 Next Gen ALL-STARS hero 1440

    2025 Next Gen All Stars: Top 20 Under 40 Plumbing Professionals

    This year’s group of NextGen All-Stars is full of young...
    Plumbing & Mechanical Contractor
    By: Kristen R. Bayles
  • Worker using the Milwaukee Tool SWITCH PACK drain cleaner

    Pipeline profits: Drain cleaning, pipe inspection create opportunities

    Drain cleaning and inspection services offer lucrative...
    Plumbing News
    By: Nicole Krawcke
  • Uponor employee, Arturo Moreno

    The reinvestment in American manufacturing and training

    Plumbing & Mechanical Chief Editor Nicole Krawcke and...
    Plumbing News
    By: Nicole Krawcke and Natalie Forster
Manage My Account
  • eNewsletters
  • Online Registration
  • Subscription Customer Service
  • eMagazine
  • Manage My Preferences

More Videos

Popular Stories

Hot water pipes

Campus shutdown at Oakland University exposes hidden risks of aging hot-water infrastructure

Floor heating manifold cabinet with flowmeter and PEX pipe.

Elegance extended: How to use the homerun system of connecting heat emitters

Industrial pressure gauge on a tank.

From cutting edge to classic: How to modernize outdated pneumatic control systems

Poll

Will business be up or down in 2025?

Do you anticipate business in 2025 to be up or down in comparison to 2024?
View Results Poll Archive

Products

The Water Came To A Stop

The Water Came To A Stop

See More Products
eBook | 2025 Radiant & Hydronics All Stars

Related Articles

  • Solar water-heating system pieced together

    See More
  • Solar freeze protection

    See More
  • Trimming the fat in baseboard-floor heating-domestic hot water system

    See More

Related Products

See More Products
  • Classic Hydronics - How To Get The Most From Those Older Hot-Water Heating Systems

  • 51EpbH0yOwL__SL210_.jpg

    We Got Steam Heat!

  • cengagebook.jpg

    Heating with Renewable Energy

See More Products
×

Keep your content unclogged with our newsletters!

Stay in the know on the latest plumbing & piping industry trends.

JOIN TODAY!
  • RESOURCES
    • Advertise
    • Contact Us
    • Directories
    • Store
    • Want More
    • Supply House Times
  • SIGN UP TODAY
    • Create Account
    • eMagazine
    • eNewsletter
    • Customer Service
    • Manage Preferences
  • SERVICES
    • Marketing Services
    • Reprints
    • Market Research
    • List Rental
    • Survey/Respondent Access
  • STAY CONNECTED
    • LinkedIn
    • Facebook
    • Instagram
    • YouTube
    • X (Twitter)
  • PRIVACY
    • PRIVACY POLICY
    • TERMS & CONDITIONS
    • DO NOT SELL MY PERSONAL INFORMATION
    • PRIVACY REQUEST
    • ACCESSIBILITY

Copyright ©2025. All Rights Reserved BNP Media.

Design, CMS, Hosting & Web Development :: ePublishing