search
cart
facebook instagram twitter linkedin youtube
  • Sign In
  • Create Account
  • Sign Out
  • My Account
  • NEWS
  • PRODUCTS
    • FEATURED PRODUCTS
  • CONTRACTORS
    • BATH & KITCHEN PRO
    • BUSINESS MANAGEMENT
    • HIGH EFFICIENCY HOMES
    • TECHNOLOGY
    • WATER TREATMENT
    • PMC COLUMNS
      • Dave Yates: Contractor’s Corner
      • John Siegenthaler: Hydronics Workshop
      • Kenny Chapman: The Blue Collar Coach
      • Matt Michel: Service Plumbing Pros
      • Scott Secor: Heating Perceptions
  • ENGINEERS
    • CONTINUING EDUCATION
    • DECARBONIZATION | ELECTRIFICATION
    • FIRE PROTECTION
    • GEOTHERMAL | SOLAR THERMAL
    • PIPING | PLUMBING | PVF
    • PME COLUMNS
      • Christoph Lohr: Strategic Plumbing Insights
      • David Dexter: Plumbing Talking Points
      • James Dipping: Engineer Viewpoints
      • John Seigenthaler: Renewable Heating Design
      • Lowell Manalo: Plumbing Essentials
      • Misty Guard: Guard on Compliance
  • RADIANT & HYDRONICS
    • RADIANT COMFORT REPORT
    • THE GLITCH & THE FIX
  • INSIGHTS
    • CODES
    • GREEN PLUMBING & MECHANICAL
    • PROJECT PROFILES
    • COLUMNS
      • Codes Corner
      • Natalie Forster: Editorial Opinion
      • Guest Editorial
  • MEDIA
    • EBOOKS
    • PODCASTS
    • VIDEOS
    • WEBINARS
  • RESOURCES
    • INDUSTRY CALENDAR
    • DIRECTORIES
    • PM BOOKSTORE
    • CE CENTER
    • MARKET RESEARCH
    • CLASSIFIEDS
  • EMAGAZINE
    • EMAGAZINE
    • ARCHIVE ISSUES
    • CONTACT
    • ADVERTISE
    • PME EMAGAZINE ARCHIVES
  • SIGN UP!
Radiant & HydronicsThe Glitch & The Fix

Piping for radiant panel heating

The Glitch and The Fix, May 2015

By John Siegenthaler, P.E.
May 2015 The Glitch and The Fix -- Glitch drawing 1

Glitch drawing 1: The radiant panel heating system is supplied by a low-flow-resistance, cast-iron boiler. Graphics credit: John Siegenthaler, P.E.

May 2015 The Glitch and The Fix -- Glitch drawing 2

Glitch drawing 2: The piping here shows part of Glitch drawing 1. The piping to and from the two tees leads to a manifold station for radiant panel heating. One pipe is supply, the other is return. Photo credit: John Siegenthaler, P.E.

May 2015 The Glitch and The Fix -- Fix drawing

Fix drawing: Although the installer probably thought he had created a primary loop, the take-off for the manifold station is not a secondary circuit. Graphics credit: John Siegenthaler, P.E.

May 2015 The Glitch and The Fix -- Glitch drawing 1
May 2015 The Glitch and The Fix -- Glitch drawing 2
May 2015 The Glitch and The Fix -- Fix drawing
May 11, 2015

The Glitch

The piping in Glitch Image 2 shows part of the Glitch schematic (Glitch Image 1) above. The piping to and from the two tees leads to a manifold station for radiant panel heating. One pipe is supply, the other is return. There is a “helper” circulator farther down the wall. The piping strapped to the bottom of the floor joists is supposedly part of a primary loop. The system is supplied by a low flow-resistance, cast-iron boiler. Water temperature is controlled by a motorized four-way mixing valve.

Examine the photo and the schematic, and list several things that need to be corrected.

The Fix

Although the installer probably thought he had created a primary loop, and even though those two tees are relatively close to each other, the take-off for the manifold station is not a secondary circuit. Neither are the other two circuits that serve the smaller manifolds. If the tees aren’t right next to each other in the same pipe, it’s not a secondary circuit.

When the far right circuit with the helper pump is operating, there is likely to be some flow reversal through the closed end of the primary loop. When water gets pushed out the end of a circulator, all it cares about is getting back to the other end of that circulator.

The shortest path for this is around the closed end of the piping loop at the far right of the schematic and photo. This will cause unintentional mixing. It also will affect the differential pressure driving flow through the other two manifold stations. The pressure drop around the closed end of the loop is likely to be quite low and, thus, there may not be sufficient differential pressure to drive adequate flow through the other two manifold stations.

Other details that are missing or unnecessary include:

1. Boiler inlet water temperature sensor to the mixing valve controller, which helps prevent sustained flue gas condensation.

2. Purging valves on the return side of each manifold station circuit.

3. If the four-way mixing valve is close to the low flow-resistance boiler, there is no need of a circulator between this valve and the boiler.

One way to fix the system is shown in the Fix drawing above.

This assumes a fixed-speed circulator to drive flow through the three manifold stations. Thus, a differential pressure bypass valve is shown at the end of the headers. It should be set about 0.5 psi above the differential pressure needed when all three zone valves are open under design load conditions.

Another option, which wasn’t available when this system was installed, is a variable-speed, pressure-regulated circulator. If used, this circulator would eliminate the need of the differential pressure bypass valve. A savings that — today — would likely be greater than the additional cost of the variable-speed circulator.

Balancing valves have been added to each manifold subcircuit. These may not be necessary if the manifold stations have individual circuit-balancing valves.
A boiler inlet temperature sensor also has been added to ensure the boiler is not operating with sustained flue gas condensation.

If the system were installed today, three fixed-speed circulator could have been replaced by a single variable-speed, pressure-regulated circulator.

The problem that will develop here is flow.

Think of it this way. If you were water being moved along the primary loop by the primary circulator and you could decide if you would rather go through those long radiant panel circuits, as well as the piping to and from the manifold station, or simply zip around the end of the loop seen at the right side of the photo, which would you choose?

If you said you would rather take the short loop around the end, congratulations — you’re thinking like water!

Most (but not all) of the flow entering the tee just above the ball valve is just going to short-circuit around the end of this loop.

Download the May 2015 The Glitch & The Fix.
 

KEYWORDS: radiant heating radiant panels radiant system design schematic layout

Share This Story

Looking for a reprint of this article?
From high-res PDFs to custom plaques, order your copy today!

John siegenthaler 200x200

John Siegenthaler, P.E., is a consulting engineer and principal of Appropriate Designs in Holland Patent, New York. In partnership with HeatSpring, he has developed several online courses that provide in-depth, design-level training in modern hydronics systems, air-to-water heat pumps and biomass boiler systems. Additional information and resources for hydronic system design are available on Siegenthaler’s website,  www.hydronicpros.com.

Recommended Content

JOIN TODAY
to unlock your recommendations.

Already have an account? Sign In

  • 2025 Next Gen ALL-STARS hero 1440

    2025 Next Gen All Stars: Top 20 Under 40 Plumbing Professionals

    This year’s group of NextGen All-Stars is full of young...
    Plumbing & Mechanical Contractor
    By: Kristen R. Bayles
  • Worker using the Milwaukee Tool SWITCH PACK drain cleaner

    Pipeline profits: Drain cleaning, pipe inspection create opportunities

    Drain cleaning and inspection services offer lucrative...
    Plumbing News
    By: Nicole Krawcke
  • Uponor employee, Arturo Moreno

    The reinvestment in American manufacturing and training

    Plumbing & Mechanical Chief Editor Nicole Krawcke and...
    Plumbing News
    By: Nicole Krawcke and Natalie Forster
Manage My Account
  • eNewsletters
  • Online Registration
  • Subscription Customer Service
  • eMagazine
  • Manage My Preferences

More Videos

Popular Stories

Hot water pipes

Campus shutdown at Oakland University exposes hidden risks of aging hot-water infrastructure

Floor heating manifold cabinet with flowmeter and PEX pipe.

Elegance extended: How to use the homerun system of connecting heat emitters

Industrial pressure gauge on a tank.

From cutting edge to classic: How to modernize outdated pneumatic control systems

Poll

Will business be up or down in 2025?

Do you anticipate business in 2025 to be up or down in comparison to 2024?
View Results Poll Archive

Products

The Water Came To A Stop

The Water Came To A Stop

See More Products
eBook | 2025 Radiant & Hydronics All Stars

Related Articles

  • Distribution Piping Options for Commercial Radiant Floor Heating

    See More
  • Multiple heating zones for hydronic and radiant applications

    See More
  • Hydronic piping for district heating system

    See More

Related Products

See More Products
  • 51CHeeKvw4L._SX322_BO1,204,203,200_.jpg

    Hydronic Radiant Heating: A Practical Guide for the Nonengineer Installer

  • Pumping Away and other really cool piping options for hydronic systems

  • howcome.gif

    How Come? Hydronic heating questions we've been asking for 100 years (with straight answers!)

See More Products
×

Keep your content unclogged with our newsletters!

Stay in the know on the latest plumbing & piping industry trends.

JOIN TODAY!
  • RESOURCES
    • Advertise
    • Contact Us
    • Directories
    • Store
    • Want More
    • Supply House Times
  • SIGN UP TODAY
    • Create Account
    • eMagazine
    • eNewsletter
    • Customer Service
    • Manage Preferences
  • SERVICES
    • Marketing Services
    • Reprints
    • Market Research
    • List Rental
    • Survey/Respondent Access
  • STAY CONNECTED
    • LinkedIn
    • Facebook
    • Instagram
    • YouTube
    • X (Twitter)
  • PRIVACY
    • PRIVACY POLICY
    • TERMS & CONDITIONS
    • DO NOT SELL MY PERSONAL INFORMATION
    • PRIVACY REQUEST
    • ACCESSIBILITY

Copyright ©2025. All Rights Reserved BNP Media.

Design, CMS, Hosting & Web Development :: ePublishing