search
cart
facebook instagram twitter linkedin youtube
  • Sign In
  • Create Account
  • Sign Out
  • My Account
  • NEWS
  • PRODUCTS
    • FEATURED PRODUCTS
  • CONTRACTORS
    • BATH & KITCHEN PRO
    • BUSINESS MANAGEMENT
    • HIGH EFFICIENCY HOMES
    • TECHNOLOGY
    • WATER TREATMENT
    • PMC COLUMNS
      • Dave Yates: Contractor’s Corner
      • John Siegenthaler: Hydronics Workshop
      • Kenny Chapman: The Blue Collar Coach
      • Matt Michel: Service Plumbing Pros
      • Scott Secor: Heating Perceptions
  • ENGINEERS
    • CONTINUING EDUCATION
    • DECARBONIZATION | ELECTRIFICATION
    • FIRE PROTECTION
    • GEOTHERMAL | SOLAR THERMAL
    • PIPING | PLUMBING | PVF
    • PME COLUMNS
      • Christoph Lohr: Strategic Plumbing Insights
      • David Dexter: Plumbing Talking Points
      • James Dipping: Engineer Viewpoints
      • John Seigenthaler: Renewable Heating Design
      • Lowell Manalo: Plumbing Essentials
      • Misty Guard: Guard on Compliance
  • RADIANT & HYDRONICS
    • RADIANT COMFORT REPORT
    • THE GLITCH & THE FIX
  • INSIGHTS
    • CODES
    • GREEN PLUMBING & MECHANICAL
    • PROJECT PROFILES
    • COLUMNS
      • Codes Corner
      • Natalie Forster: Editorial Opinion
      • Guest Editorial
  • MEDIA
    • EBOOKS
    • PODCASTS
    • VIDEOS
    • WEBINARS
  • RESOURCES
    • INDUSTRY CALENDAR
    • DIRECTORIES
    • PM BOOKSTORE
    • CE CENTER
    • MARKET RESEARCH
    • CLASSIFIEDS
  • EMAGAZINE
    • EMAGAZINE
    • ARCHIVE ISSUES
    • CONTACT
    • ADVERTISE
    • PME EMAGAZINE ARCHIVES
  • SIGN UP!
ColumnsJohn Siegenthaler: Hydronics Workshop

Combining outdoor reset control and heat pumps

Don’t overcook it.

By John Siegenthaler, P.E.
December 19, 2013

In past columns, we’ve discussed geothermal water-to-water heat pumps and air-to-water heat pumps via hydronic heat sources. Both can be a great match to low-temperature hydronic distribution systems.

The word “geothermal” is currently one of the hottest buzzwords in the HVAC industry. It’s very evident that geothermal heat pump systems are quickly gaining market share in a wide range of buildings. Even the feds think it’s worth pitching in 30 cents on the dollar to help put one of these systems in your house.

Although not currently as well-known as geothermal, air-to-water heat pumps are gaining traction in North America. At least six manufacturers now offer AWHPs that are appropriate for residential and light commercial hydronic systems.

I think the hydronics industry has a great opportunity to capitalize on the growing interest in heat pumps. We need to promote how both geothermal and AWHPs can be combined with low-temperature hydronic distribution systems to deliver the combination of low operating cost and superior comfort. Beyond this combination is the opportunity to use either type of heat pump as the primary means of heating domestic water and providing chilled water for cooling.

Both geothermal water-to-water heat pumps and AWHPs thrive on low-load water temperatures. Although either type of heat pump can safely operate with leaving load water temperatures as high as 120° F, anything that can be done to lower the load water temperature will improve both heating capacity and coefficient of performance.

This month I want to discuss ways to maximize both the heating capacity and COP of heat pumps using a technique that’s already familiar to most seasoned hydronic professionals — outdoor reset control.

 

The lower the better

The heating performance of geothermal water-to-water and air-to-water heat pumps is very sensitive to the water temperature leaving their condensers. The lower this leaving load water temperature, relative to the temperature of the source water, the higher the heating capacity and COP. The graphs in Figure 1 bear this out for both types of heat pumps.

As designers, there isn’t much we can do about the temperature of the source water entering a geothermal heat pump, short of designing a very oversized earth loop, which will only yield an incrementally higher entering source water temperature. In the case of air-to-water heat pumps, we’re at the mercy of the outdoor air temperature.

However, we can do several things to lower the load water temperature.

First, design a hydronic distribution system that can deliver design load heat output while operating at the lowest practical supply water temperature. Radiant floor, wall and ceiling panels are likely the best opportunity. These would be followed by generously sized panel radiators, especially those with internal microfans to boost convective heat output at lower water temperatures. Next would come generous lengths of low-temperature, fin-tube baseboard.

The criteria I suggest is to provide a distribution system that can supply design load using supply water temperatures no higher than 120°. Feel free to design around even lower supply water temperatures if it’s practical and cost-effective.

Next, use an outdoor reset controller to operate the heat pump at the lowest possible water temperature that can still supply the heating load.

One of the easiest ways to do this is to pipe the heat pump into a buffer tank and insert the supply water temperature sensors into a properly located well in that tank, as shown in Figure 2 for a geothermal heat pump and Figure 3 for an air-to-water heat pump.

The air-to-water heat pump is connected to the balance of the system using an antifreeze-protected circuit and a generously sized brazed-plate heat exchanger. This eliminates concerns of freezing, even during a prolonged power failure. The heat exchanger should be selected based on an approach temperature difference no higher than 5° when transferring the maximum heating capacity of the heat pump. This is the temperature difference between the heated antifreeze supplied into the “hot” side of the heat exchanger and the water temperature leaving the “cooler” side of the heat exchanger.

 

Target water temperature

Both schematics show an outdoor reset controller. Whenever it is powered on, this controller measures the current outdoor temperature and uses it, along with its settings, to calculate the ideal target water temperature required by the distribution system. It then compares this calculated target temperature to the temperature measured by the sensor in the buffer tank.

If the measured temperature is more than one half the differential below the target temperature, a pair of contacts inside the reset controller close. This contact closure turns on the heat pump. The heat pump then turns on the circulator(s) between itself and the buffer tank. If it’s a geothermal water-to-water heat pump, the earth loop circulators also are turned on.

The heat pump continues to add heat to the buffer tank until one of two things happens: the heating demand is satisfied at the room thermostat, which turns off the outdoor reset controller and the heat pump; or the temperature inside the buffer tank reaches one half the differential above the target temperature calculated by the outdoor reset controller.

Figure 4shows a typical reset line for an outdoor reset controller operating a heat pump in such a system.

The target temperature is represented by the blue “reset” line. The white gap surrounding this line represents the differential setting of the reset controller. In this case the differential is 5° and centered on the reset line. The differential is necessary to prevent the reset controller from short-cycling the heat pump.

Consider the situation when the outdoor temperature is 30°. The calculated target temperature, under this condition, is 97°. The lower dashed line represents a temperature that is always 2.5° F (e.g., half the differential) below the target temperatures. When the outdoor temperature is 30°, the lower dashed line indicates a temperature of 97° - 2.5° = 94.5°. If the measured temperature in the buffer tank is at or below this temperature, the outdoor reset controller turns on the heat pump.

The upper dashed line represents a temperature that is always 2.5° above the target temperature. When the outdoor temperature is 30°, the upper dashed line indicates a temperature of 97° + 2.5° = 99.5°. If the measured temperature in the buffer tank is at or above this temperature, the heat pump is off.

The differential can be adjusted on most outdoor reset controllers. Wider differentials yield longer operating cycles for the heat pump, which leads to less stress on components. However, wider differentials also allow greater departure between the target water temperature and the water temperature in the buffer tank.

This means a wider variation in supply water temperature to the distribution system. Given that many low-temperature distribution systems are sensitive to minor water temperature variations, I suggest differentials no wider than 10°.

Recent testing of air-to-water heat pumps operated by outdoor reset control show increases in seasonal efficiency of 10% to 18%, based on different climate locations. The electrical energy savings associated with such a boost in seasonal efficiency would likely pay for the outdoor reset controller in under one year. It’s a no-brainer.

 It also shows how technology that’s already familiar to most hydronic professionals — but not necessarily by those outside the industry — can “amplify” the benefits of renewable energy heat sources. Use it where you can. 

KEYWORDS: heat pumps hydronics

Share This Story

Looking for a reprint of this article?
From high-res PDFs to custom plaques, order your copy today!

John siegenthaler 200x200

John Siegenthaler, P.E., is a consulting engineer and principal of Appropriate Designs in Holland Patent, New York. In partnership with HeatSpring, he has developed several online courses that provide in-depth, design-level training in modern hydronics systems, air-to-water heat pumps and biomass boiler systems. Additional information and resources for hydronic system design are available on Siegenthaler’s website,  www.hydronicpros.com.

Recommended Content

JOIN TODAY
to unlock your recommendations.

Already have an account? Sign In

  • 2025 Next Gen ALL-STARS hero 1440

    2025 Next Gen All Stars: Top 20 Under 40 Plumbing Professionals

    This year’s group of NextGen All-Stars is full of young...
    Plumbing & Mechanical Contractor
    By: Kristen R. Bayles
  • Worker using the Milwaukee Tool SWITCH PACK drain cleaner

    Pipeline profits: Drain cleaning, pipe inspection create opportunities

    Drain cleaning and inspection services offer lucrative...
    Plumbing News
    By: Nicole Krawcke
  • Uponor employee, Arturo Moreno

    The reinvestment in American manufacturing and training

    Plumbing & Mechanical Chief Editor Nicole Krawcke and...
    Plumbing News
    By: Nicole Krawcke and Natalie Forster
Manage My Account
  • eNewsletters
  • Online Registration
  • Subscription Customer Service
  • eMagazine
  • Manage My Preferences

More Videos

Popular Stories

Hot water pipes

Campus shutdown at Oakland University exposes hidden risks of aging hot-water infrastructure

Floor heating manifold cabinet with flowmeter and PEX pipe.

Elegance extended: How to use the homerun system of connecting heat emitters

Industrial pressure gauge on a tank.

From cutting edge to classic: How to modernize outdated pneumatic control systems

Poll

Will business be up or down in 2025?

Do you anticipate business in 2025 to be up or down in comparison to 2024?
View Results Poll Archive

Products

The Water Came To A Stop

The Water Came To A Stop

See More Products
eBook | 2025 Radiant & Hydronics All Stars

Related Articles

  • Outdoor Reset Control--No Quality Hydronic System Should Be Without It

    See More
  • Siggy

    John Siegenthaler: Combining heat pumps with buffer tanks

    See More
  • Outdoor reset is the 'smart' choice

    See More

Related Products

See More Products
  • 51EpbH0yOwL__SL210_.jpg

    We Got Steam Heat!

  • Facility Piping Systems Handbook, 3rd Ed.

See More Products

Events

View AllSubmit An Event
  • November 13, 2025

    Smart Pumping Strategies for HVAC: Unlock Efficiency with Grundfos E-Pumps and Systems

    On Demand Learn how to optimize energy use, improve system control, and simplify pump selection using the Grundfos SELECT tool.
View AllSubmit An Event
×

Keep your content unclogged with our newsletters!

Stay in the know on the latest plumbing & piping industry trends.

JOIN TODAY!
  • RESOURCES
    • Advertise
    • Contact Us
    • Directories
    • Store
    • Want More
    • Supply House Times
  • SIGN UP TODAY
    • Create Account
    • eMagazine
    • eNewsletter
    • Customer Service
    • Manage Preferences
  • SERVICES
    • Marketing Services
    • Reprints
    • Market Research
    • List Rental
    • Survey/Respondent Access
  • STAY CONNECTED
    • LinkedIn
    • Facebook
    • Instagram
    • YouTube
    • X (Twitter)
  • PRIVACY
    • PRIVACY POLICY
    • TERMS & CONDITIONS
    • DO NOT SELL MY PERSONAL INFORMATION
    • PRIVACY REQUEST
    • ACCESSIBILITY

Copyright ©2025. All Rights Reserved BNP Media.

Design, CMS, Hosting & Web Development :: ePublishing