search
cart
facebook instagram twitter linkedin youtube
  • Sign In
  • Create Account
  • Sign Out
  • My Account
  • NEWS
  • PRODUCTS
    • FEATURED PRODUCTS
  • CONTRACTORS
    • BATH & KITCHEN PRO
    • BUSINESS MANAGEMENT
    • HIGH EFFICIENCY HOMES
    • TECHNOLOGY
    • WATER TREATMENT
    • PMC COLUMNS
      • Dave Yates: Contractor’s Corner
      • John Siegenthaler: Hydronics Workshop
      • Kenny Chapman: The Blue Collar Coach
      • Matt Michel: Service Plumbing Pros
      • Scott Secor: Heating Perceptions
  • ENGINEERS
    • CONTINUING EDUCATION
    • DECARBONIZATION | ELECTRIFICATION
    • FIRE PROTECTION
    • GEOTHERMAL | SOLAR THERMAL
    • PIPING | PLUMBING | PVF
    • PME COLUMNS
      • Christoph Lohr: Strategic Plumbing Insights
      • David Dexter: Plumbing Talking Points
      • James Dipping: Engineer Viewpoints
      • John Seigenthaler: Renewable Heating Design
      • Lowell Manalo: Plumbing Essentials
      • Misty Guard: Guard on Compliance
  • RADIANT & HYDRONICS
    • RADIANT COMFORT REPORT
    • THE GLITCH & THE FIX
  • INSIGHTS
    • CODES
    • GREEN PLUMBING & MECHANICAL
    • PROJECT PROFILES
    • COLUMNS
      • Codes Corner
      • Natalie Forster: Editorial Opinion
      • Guest Editorial
  • MEDIA
    • EBOOKS
    • PODCASTS
    • VIDEOS
    • WEBINARS
  • RESOURCES
    • INDUSTRY CALENDAR
    • DIRECTORIES
    • PM BOOKSTORE
    • CE CENTER
    • MARKET RESEARCH
    • CLASSIFIEDS
  • EMAGAZINE
    • EMAGAZINE
    • ARCHIVE ISSUES
    • CONTACT
    • ADVERTISE
    • PME EMAGAZINE ARCHIVES
  • SIGN UP!
Columns

Valve Smarts
John Siegenthaler, PE

By John Siegenthaler, P.E.
June 1, 2004
A mixing valve without 'brains' will not properly perform.

Figure 1
There are several types of mixing controls currently available for situations where conventional boilers (e.g., those designed to operate without sustained flue gas condensation) are matched up with low-temperature distribution systems. They include two-way injection valves as well as three-way valves, four-way valves and variable-speed injection pumps.

I like to think of the mixing controls and piping around them as a “mixing assembly” that forms a bridge between the higher temperature boiler circuit and lower temperature distribution circuit as shown in Figure 1. All heat that makes it from the boiler to the distribution circuit has to cross this bridge. With proper control, the “Btu traffic” across the bridge can range from zero to full design load rate.

When the heat is supplied by a conventional boiler, the mixing assembly must do two things:

    1. Accurately control the supply water temperature to the distribution system.
    2. Prevent the boiler from operating with sustained flue gas condensation.
Doing this requires a mixing assembly that senses temperatures at two locations in the system and, when necessary, responds to changes in these temperatures. This brings us to the concept of “smart” vs. “dumb” mixing assemblies.

Figure 2
A “smart” mixing device - like a thermostatic valve or a motorized valve operated by a controller - can sense changing temperatures and react to them by varying the flow in a portion of the system. The schematic in Figure 2 shows two three-way thermostatic valves being used together as a smart mixing assembly. One valve monitors the supply temperature to the distribution system; the other monitors the inlet temperature to the conventional boiler. Together they provide both functions described earlier.

Another example of a smart mixing assembly would be a single three-way motorized valve as shown in Figure 3. The controller that operates the valve actuator senses both supply temperature to the distribution system and inlet temperature to the boiler. If the latter is low enough to cause flue gas condensation, the controller reacts by slowly closing the hot port of the mixing valve until the boiler temperature rises to the point where flue gas condensation is not occurring. A four-way motorized mixing valve with the same type of controller could provide the same type of control. So could a variable-speed injection pump.

Figure 3

Dumbed Down

In the interest of saving money, more than a few people have questioned the need to install the “brains” of a motorized three-way or four-way mixing assembly. Their incorrect reasoning goes something like this: If I install the three-way or four-way valve body and set its handle so the temperature to the distribution system is about right, the supply temperature will stay at that temperature whenever the system operates.

Although such a strategy might provide tolerable performance with low-mass heat sources and distribution systems, it's not going to work for higher-mass systems such as cast-iron boilers supplying heated concrete slabs.

The problem is that a three-way or four-way rotary valve without a controller is totally blind to what's happening as a result of the mixing. If the hot water temperature supplied by the boiler and the temperature returning from the distribution system were both rock steady, then (and only then) would the mix temperature from the valve remain constant.

Unfortunately, heating systems very seldom experience such operating conditions. Theirs is the world of incessant transients, where water temperature from the heat source, as well as the distribution system, is usually fluctuating. This happens because of the differential associated with burner operation, the lag in bringing a high-thermal-mass heat emitter up to normal operating temperatures, zone circuits turning on and off, and reaction to internal heat gains.

A mixing valve without brains will not provide acceptable performance under these very typical operating conditions. Installing such a valve without the associated controller is like buying a high-quality car, starting the engine, shifting it into gear, and expecting it to drive itself from that point on.

Some of you are probably thinking that this should all be too obvious to anyone who installs hydronic systems. Several mechanical rooms that I've visited or viewed photos of indicate otherwise (see Figures 4 and 5 for some examples).

Figure 4
As with many of the design or installation issues associated with the “new hydronics,” I think such designs stem from two misunderstandings. First, visualizing system operation only at steady state/design load conditions. Second, assuming that techniques that might have produced acceptable results with high-temperature/low-mass baseboard systems will produce the same results with low-temperature/high-mass radiant systems. It's like assuming a fully-loaded 18 wheeler can handle curves like a Ferrari because you can imagine both of them going down a straight road at a steady 65 mph.

Three-way or four-way mixing valves without controllers can produce large temperature variations in both the distribution system and the boiler. The results can be corroded boilers and vent connectors, very slow recovery from temperature setbacks, and excessively hot temperatures supplied to low-temperature heat emitters. Call-backs are sure to follow this type of installation, and the cost of properly configuring the mixing valves will only be higher than doing the job right in the first place.

Figure 5

When It's OK Not To Have A Brain

There are applications where manually set (“dumb”) mixing valves can be used successfully. When installed “downstream” of a smart mixing assembly or a boiler operated on an outdoor reset control, the temperature of the hot water entering the manually set mixing valve varies in response to the load conditions (e.g., outdoor reset control).

This, in combination with the changing load and changing temperature drop of the distribution system, allows the mixing valve to produce an outlet temperature that “tracks” the change in entering hot water temperature. This concept is called proportional reset, as illustrated in Figure 6. Note that the mixed outlet temperature from the dumb valve is always lower than the mixed temperature from the smart mixing assembly.

To picture why this happens, think about standing in a shower that has two manually set valves - one for hot water and the other for cold. Imagine that you've set the blended temperature coming out of the showerhead to your liking. After a few minutes in the shower, the temperature of the water supplied to the hot water faucet begins decreasing. The blended temperature coming from the shower also decreases.

Your (smart) response to this situation is to increase the flow rate of hot water, decrease the flow of cool water, or both in an attempt to keep the blended temperature reasonably comfortable. However, in a heating system, the predicable drop in mixed supply water temperature as the load decreases is often desirable. Hence, the manually set mixing valve could maintain the same flow proportions and still produce a desired effect.

Figure 6
There are limitations to this strategy. For example, consider a system in which manifold valve actuators are installed for individual circuit control. Each time an actuator opens or closes, the flow and head loss of the distribution system changes. These changes cause a corresponding change in the flow proportions at the dumb mixing device and a change in the mixed outlet temperature. Under some conditions, there could be wide variations in the mixed temperature.

A manually set mixing device cannot react to protect a conventional boiler from low-temperature operation. When such a device supplies a low-temperature/high-thermal-mass distribution system that represents more than 25 percent of the boiler's total heating output, it should only be used downstream of an intelligent mixing device that can protect the boiler.

The use of manually set mixing valves is not a good idea in systems where there will be frequent changes in thermostat settings. This is especially true when heat is delivered through high-mass radiant panels. Such a system would experience long recovery times following a setback because the mixed temperature supplied to the circuits would be depressed by the cooler-than-normal temperature returning from the radiant panel circuit. An intelligent mixing assembly could compensate for this. A dumb mixing assembly cannot.

Both smart and dumb mixing valves have their place. Smart system designers always determine how much intelligence the mixing valves in their systems require, and ensure they are properly configured.

Siegenthaler At ISH North America

John Siegenthaler, P.E., is a scheduled speaker at this year's ISH North America trade show held Oct. 14-16 in Boston. He will present a radiant discussion on multiload systems Thursday, Oct. 14 at 9 a.m., and Friday, Oct. 15 at 3 p.m. To register for the show, visit www.ish-na.com.

Siegenthaler Seminar This July

"Modern Engineering Concepts For Hydronic Heating Design" is an intensive one-day seminar presenting the latest concepts in modern hydronic heating system design for both residential and commercial systems. Six dates are available in July. To register call 888/530-6714 or visit www.PMmag.com for more information.

Share This Story

Looking for a reprint of this article?
From high-res PDFs to custom plaques, order your copy today!

John siegenthaler 200x200

John Siegenthaler, P.E., is a consulting engineer and principal of Appropriate Designs in Holland Patent, New York. In partnership with HeatSpring, he has developed several online courses that provide in-depth, design-level training in modern hydronics systems, air-to-water heat pumps and biomass boiler systems. Additional information and resources for hydronic system design are available on Siegenthaler’s website,  www.hydronicpros.com.

Recommended Content

JOIN TODAY
to unlock your recommendations.

Already have an account? Sign In

  • 2025 Next Gen ALL-STARS hero 1440

    2025 Next Gen All Stars: Top 20 Under 40 Plumbing Professionals

    This year’s group of NextGen All-Stars is full of young...
    Plumbing & Mechanical Engineer
    By: Kristen R. Bayles
  • Worker using the Milwaukee Tool SWITCH PACK drain cleaner

    Pipeline profits: Drain cleaning, pipe inspection create opportunities

    Drain cleaning and inspection services offer lucrative...
    Green Plumbing and Mechanical
    By: Nicole Krawcke
  • Uponor employee, Arturo Moreno

    The reinvestment in American manufacturing and training

    Plumbing & Mechanical Chief Editor Nicole Krawcke and...
    Plumbing News
    By: Nicole Krawcke and Natalie Forster
Manage My Account
  • Newsletters
  • Online Registration
  • Subscription Customer Service
  • eMagazine
  • Manage My Preferences

More Videos

Popular Stories

Hot water pipes

Campus shutdown at Oakland University exposes hidden risks of aging hot-water infrastructure

Floor heating manifold cabinet with flowmeter and PEX pipe.

Elegance extended: How to use the homerun system of connecting heat emitters

Industrial pressure gauge on a tank.

From cutting edge to classic: How to modernize outdated pneumatic control systems

Poll

Will business be up or down in 2025?

Do you anticipate business in 2025 to be up or down in comparison to 2024?
View Results Poll Archive

Products

The Water Came To A Stop

The Water Came To A Stop

See More Products
eBook | 2025 Radiant & Hydronics All Stars

Related Articles

  • Picturing ∆P
    John Siegenthaler, PE

    See More
  • Plumbing connection with close up water brass thermostatic mixing valve isolated on white background.

    The Do's And Don'ts Of Three-Way Thermostatic Valves
    John Siegenthaler, PE

    See More
  • Where Do The Constants Come From?
    John Siegenthaler, PE

    See More

Related Products

See More Products
  • Valve Handbook

See More Products

Events

View AllSubmit An Event
  • May 29, 2014

    Coffee with Caleffi and John Siegenthaler: Air Source and Water Source Heat Pump Systems.

    Coffee with Caleffi will be hosted by John Siegenthaler on May 29, 2014.
View AllSubmit An Event
×

Keep your content unclogged with our newsletters!

Stay in the know on the latest plumbing & piping industry trends.

JOIN TODAY!
  • RESOURCES
    • Advertise
    • Contact Us
    • Directories
    • Store
    • Want More
    • Supply House Times
  • SIGN UP TODAY
    • Create Account
    • eMagazine
    • Newsletter
    • Customer Service
    • Manage Preferences
  • SERVICES
    • Marketing Services
    • Reprints
    • Market Research
    • List Rental
    • Survey/Respondent Access
  • STAY CONNECTED
    • LinkedIn
    • Facebook
    • Instagram
    • YouTube
    • X (Twitter)
  • PRIVACY
    • PRIVACY POLICY
    • TERMS & CONDITIONS
    • DO NOT SELL MY PERSONAL INFORMATION
    • PRIVACY REQUEST
    • ACCESSIBILITY

Copyright ©2025. All Rights Reserved BNP Media.

Design, CMS, Hosting & Web Development :: ePublishing