• Sign In
  • Create Account
  • Sign Out
  • My Account
  • NEWS
  • PRODUCTS
  • CONTRACTORS
  • ENGINEERS
  • RADIANT & HYDRONICS
  • INSIGHTS
  • MEDIA
  • RESOURCES
  • EMAGAZINE
  • SIGN UP!
cart
facebook instagram twitter linkedin youtube
  • CONTRACTORS
  • BATH & KITCHEN PRO
  • BUSINESS MANAGEMENT
  • HIGH EFFICIENCY HOMES
  • TECHNOLOGY
  • WATER TREATMENT
  • PMC COLUMNS
  • PMC COLUMNS
  • Dave Yates: Contractor’s Corner
  • John Siegenthaler: Hydronics Workshop
  • Kenny Chapman: The Blue Collar Coach
  • Matt Michel: Service Plumbing Pros
  • Scott Secor: Heating Perceptions
  • ENGINEERS
  • CONTINUING EDUCATION
  • DECARBONIZATION | ELECTRIFICATION
  • FIRE PROTECTION
  • GEOTHERMAL | SOLAR THERMAL
  • PIPING | PLUMBING | PVF
  • PME COLUMNS
  • PME COLUMNS
  • Christoph Lohr: Strategic Plumbing Insights
  • David Dexter: Plumbing Talking Points
  • James Dipping: Engineer Viewpoints
  • John Seigenthaler: Renewable Heating Design
  • Lowell Manalo: Plumbing Essentials
  • Misty Guard: Guard on Compliance
  • RADIANT & HYDRONICS
  • RADIANT COMFORT REPORT
  • THE GLITCH & THE FIX
  • INSIGHTS
  • CODES
  • GREEN PLUMBING & MECHANICAL
  • PROJECT PROFILES
  • COLUMNS
  • SPONSOR INSIGHTS
  • COLUMNS
  • Codes Corner
  • Natalie Forster: Editorial Opinion
  • Guest Editorial
  • MEDIA
  • PODCASTS
  • VIDEOS
  • WEBINARS
  • RESOURCES
  • INDUSTRY CALENDAR
  • DIRECTORIES
  • EBOOKS
  • PM BOOKSTORE
  • CE CENTER
  • MARKET RESEARCH
  • CLASSIFIEDS
  • EMAGAZINE
  • EMAGAZINE
  • ARCHIVE ISSUES
  • CONTACT
  • ADVERTISE
  • PME EMAGAZINE ARCHIVES
search
cart
facebook instagram twitter linkedin youtube
  • Sign In
  • Create Account
  • Sign Out
  • My Account
  • NEWS
  • PRODUCTS
  • CONTRACTORS
    • BATH & KITCHEN PRO
    • BUSINESS MANAGEMENT
    • HIGH EFFICIENCY HOMES
    • TECHNOLOGY
    • WATER TREATMENT
    • PMC COLUMNS
      • Dave Yates: Contractor’s Corner
      • John Siegenthaler: Hydronics Workshop
      • Kenny Chapman: The Blue Collar Coach
      • Matt Michel: Service Plumbing Pros
      • Scott Secor: Heating Perceptions
  • ENGINEERS
    • CONTINUING EDUCATION
    • DECARBONIZATION | ELECTRIFICATION
    • FIRE PROTECTION
    • GEOTHERMAL | SOLAR THERMAL
    • PIPING | PLUMBING | PVF
    • PME COLUMNS
      • Christoph Lohr: Strategic Plumbing Insights
      • David Dexter: Plumbing Talking Points
      • James Dipping: Engineer Viewpoints
      • John Seigenthaler: Renewable Heating Design
      • Lowell Manalo: Plumbing Essentials
      • Misty Guard: Guard on Compliance
  • RADIANT & HYDRONICS
    • RADIANT COMFORT REPORT
    • THE GLITCH & THE FIX
  • INSIGHTS
    • CODES
    • GREEN PLUMBING & MECHANICAL
    • PROJECT PROFILES
    • COLUMNS
      • Codes Corner
      • Natalie Forster: Editorial Opinion
      • Guest Editorial
    • SPONSOR INSIGHTS
  • MEDIA
    • PODCASTS
    • VIDEOS
    • WEBINARS
  • RESOURCES
    • INDUSTRY CALENDAR
    • DIRECTORIES
    • EBOOKS
    • PM BOOKSTORE
    • CE CENTER
    • MARKET RESEARCH
    • CLASSIFIEDS
  • EMAGAZINE
    • EMAGAZINE
    • ARCHIVE ISSUES
    • CONTACT
    • ADVERTISE
    • PME EMAGAZINE ARCHIVES
  • SIGN UP!
Plumbing & Mechanical Engineer Piping | Plumbing | PVF

Choosing the right balancing valve

Specify the right product for the project.

By Kevin Freidt
balancing valve-figure 1

Fixed orifice, 3/4-inch.

balancing valve-figure 2

Flow versus pressure drop chart, fixed orifice.

Balancing valve-figure 3

Variable orifice balancing valve with differential pressure tool hook-up.

Balancing valve-figure 4

Variable orifice valve with knob set at index 2.

Balancing valve-figure 5

Flow versus pressure drop chart, variable orifice.

Balancing valve-figure 6

Direct reading manual balancing valve.

Balancing valve-figure 7
Balancing valve-figure 8

Pressure independent balancing valves.

Balancing valve-figure 9

Characterized cartridge assembly for 10 gpm.

Balancing valve-figure 9a
Balancing valve-figure 9b
Balancing valve-figure 9c
Balancing valve-figure 10

Field adjustable thermal balancing valve.

balancing valve-figure 1
balancing valve-figure 2
Balancing valve-figure 3
Balancing valve-figure 4
Balancing valve-figure 5
Balancing valve-figure 6
Balancing valve-figure 7
Balancing valve-figure 8
Balancing valve-figure 9
Balancing valve-figure 9a
Balancing valve-figure 9b
Balancing valve-figure 9c
Balancing valve-figure 10
January 13, 2021

Several different balancing valve technologies exist in today’s market; some are new and some have been around for decades. A working knowledge of the entire range of options will serve you well when selecting the correct approach for your specific hydronic or plumbing system project.


Manual balancing valves

Manual (also known as pressure-dependent or static) balancing valves have been the industry workhorses for decades. They are called “static” balancing valves because once they are adjusted, there is no movement of the internal components. Most have two pressure-test ports (PT) for measuring differential pressure across the internal flow restriction, which is then correlated to a flow rate using a graph or chart of some type.

There are two types of manual balancing valves. A fixed orifice (FO) type and a variable orifice (VO) type. Orifice refers to the portion of the valve located between the two PT ports.


Fixed orifice balancing valves

In a FO valve, there is no change in internal geometry between the differential pressure ports; the orifice remains fixed while the valve is being adjusted at a plug and seat adjacent to the orifice. 

A direct relationship exists between pressure drop across the ports and the flow rate. That relationship is governed by the following formula: 

equation 1

Where:
Q = flow rate (in gpm);
Cᵥ = the flow coefficient of the orifice between the ports; and
ΔP = the pressure drop across the ports (in psi).

For example; the manufacturer’s published Cᵥ value for the valve in Figure 1 is 6.4. If the ΔP across the ports is measured as 0.3 psi, then the calculated flow rate is:

equation 2

To eliminate the need for installers to do this calculation, manufacturers plot the relationship on wheels or charts to allow quick determination of flow rate. Figure 2 shows a chart for the valve shown in Figure 1. The red lines show how the previously calculated flow is determined.

Special instruments are used to measure differential pressure across FO and VO balancing valves. Some digital manometers can be programmed to directly convert the differential pressure measured across a valve to a flow rate reading.


Variable orifice balancing valves

Figure 3 shows an example of a variable orifice (VO) valve connected to a differential pressure tool. As the contractor turns the knob to adjust flow, the geometry of the orifice varies because the plug and seat are in between the PT ports.

Thus the Cᵥ value of the orifice changes as the valve is adjusted. This makes the procedure for determining flow rate more involved than with a FO valve. Manufacturers publish a family of curves for each size valve. Each curve relates to a specific knob position. Figure 5 shows the family of curves published for the valve shown in Figure 4. The red lines illustrate how a knob setting of 2 combined with a measured differential pressure of 3 psi, indicates a flow rate of 3 gpm. 

If this flow measurement of 3 gpm was the first one conducted, and 5 gpm is the desired flow rate for the circuit, the contractor might choose to open the valve to position 3 or 4, determine the new flow rate, and through simple interpolation, determine the knob setting that should result in a flow rate close to the target value of 5 gpm. This process would be repeated, as necessary, until the target is attained.

Balancing a circuit with traditional manual balancing valves is an iterative “trial and error” process. Furthermore, because circuits are hydraulically coupled, adjusting flow in one circuit affects flow in the other circuits. A system with 10 circuits can require 50 or more readings and adjustments to achieve the desired flow rates. Accurate balancing requires skill and experience. Various testing, adjusting and balancing (TAB) organizations exist in North America to train and certify balancing professionals.


Direct reading balancing valves

A variation of the FO valve was introduced in North America a few years ago, and doesn’t require ΔP readings. Instead, it uses a built-in flow meter. The flow rate is directly read by the balancing technician. This type of valve is generally more expensive than traditional manual balancing valves, but can simplify balancing, reduce balancing labor time significantly and eliminate errors. Figure 6 shows an example. 

This type of valve contains a bypass channel connected to both sides of a fixed venturi. To set the flow rate, the balancing technician pulls the ring on the bypass valve which allows flow through the bypass channel. A spring/disc mechanism travels within this bypass channel a distance that is proportional to the valve’s flow rate. The disc is magnetic and attracts a small steel bead located within an external sealed glass cylinder. The cylinder graduations are calibrated so that the bead location indicates flow rate.

To set the flow, the balancing technician simply rotates the control stem with a wrench while viewing the meter until reaching the target value, then releases the ring. Circuit flow can be set in a fraction of the time required for traditional manual balancing valves. Furthermore, common sources of error — such as incorrectly calibrated instruments, misinterpreting pressure readings, incorrectly interpolating logarithmic charts and incorrectly interpolating adjustment knob positions — can be eliminated.

In low flow rate applications, such as domestic hot water recirculation systems, the calculated branch flow rates required to maintain a minimum temperature at the farthest fixture are frequently so low that they are difficult or impossible to read using traditional manual balancing valves that rely on differential pressure. For a given flow rate, the differential pressure across a VO valve is greater than that of a FO valve, so it is easier to read — seemingly an advantage. But an offsetting factor is having to interpolate based on adjustment knob position.

Because of their advantages, direct reading manual balancing valves are gaining popularity for both hydronic and DHW recirculation applications. Figure 7 shows an example of a low lead version on a DHW return riser. Notice the minimum graduation of 1/2 gpm on the scale. This is a commonly specified circuit flow rate, and it would be challenging to achieve using a balancing valve with PT ports.

 

Automatic balancing valves

Figure 8 shows a type of balancing valve type often referred to as an automatic (or pressure independent) balancing valve. Unlike a manual balancing valve, an automatic balancing valve has an internal cartridge that moves to maintain a constant flow rate as differential pressure across the valve varies. These valves are sometimes referred to as “dynamic” balancing valves.

Other balancing valves technologies now exist that also have moving parts. They include thermal balancing valves and pressure independent control valves. These valves are also automatic, so the simple descriptor of “automatic” is no longer sufficient. We like to refer to the valve type shown in Figure 8 as a “pressure independent” (PI) balancing valve to differentiate it from a thermal balancing valve or pressure independent control valve (PICV).

Unlike a static balancing valve, a PI balancing valve controls flow rate within a circuit to a fixed value based on a “characterized” opening in the cartridge, as shown in Figure 9. As differential pressure across the valve increases from 0 to the minimum value of the working range, flow increases proportionally. Up to this condition, the cartridge within the valve has not yet moved and the spring has not yet begun to compress (as shown in Figure 9a). As differential pressure continues increasing, the cartridge begins compressing against the spring (as shown in Figure 9b), reducing the characterized flow aperture area and keeping flow constant. This regulation process continues as pressure increases to the maximum differential pressure value of the working range. Above the maximum differential, flow rate will then increase because the spring is fully compressed (as shown in Figure 9c). In a multi-branch system, pressure independent valves maintain stable flow rates within each branch.

Because PI valves are supplied with a pre-calibrated flow rate cartridge, they are essentially “plug-and-play,” and require no balancing labor. Several designers prefer PI valves over manual valves to simplify commissioning. They are effective in both hydronic and plumbing (low lead models) applications.


Thermal balancing valves

A relatively new type of balancing valve is the thermal balancing valve (TBV). It is designed primarily for balancing domestic hot water recirculation circuits. A TBV modulates flow rate within a circuit to maintain a fixed temperature. In recirculating domestic hot water systems, this is significant because unlike hydronic applications where balancing is intended to control heat transfer, in recirculating DHW systems balancing is done to ensure adequate water temperature at the fixtures. The water entering the valve is coming from the DHW hot water supply line, so increasing the flow increases the temperature at the valve. TBVs are a temperature solution for a temperature problem.

Some TBV models are available with a bypass feature that allows the thermal balancing valve to be used in a thermal disinfection application for control of Legionella.

Both fixed temperature (non-adjustable) and field adjustable TBV types are available. Figure 10 shows a contractor adjusting a field adjustable type TBV within a circuit return riser.

In a TBV, an internal thermostatic balancing cartridge expands and contracts in response to water temperature passing through the valve. When cool water is present, the valve plug is fully open to maximize flow. As water temperature rises, the valve begins to close down until the temperature reaches the user-set value. At and above set point temperature, the valve plug is at minimum position, open just enough for ongoing temperature sensing.

This modulating action of the TBV ensures automatic water temperature control within each recirculating branch. When combined with a variable speed circulator, operating in constant pressure mode, TBVs can result in energy savings because when the system temperatures are at set point and the valves are at minimum position, the circulator will slow down and reduce energy consumption.


In summary

Due to their history and familiarity, manual balancing valves are still the go-to valve for many industry professionals. Automatic valves eliminate the balancing labor associated with manual valves, and are a good choice if constant gpm is the designer’s primary goal. 

For domestic hot water circuit temperature control, thermal balancing valves are hard to beat due to their simple no-balancing, temperature-based technology. There are more choices than ever before in balancing valves; with just a little information, you can make the right choice for your balancing project. 

KEYWORDS: balancing valves engineers PHCP-PVF valves

Share This Story

Looking for a reprint of this article?
From high-res PDFs to custom plaques, order your copy today!

Kevin Freidt is the director of project management and technical support for Caleffi North America. He has a Bachelor of Science in Mechanical Engineering Technology, 30-plus years of experience in the commercial HVAC industry, LEED AP accreditation and is an ASPE member.  

Recommended Content

JOIN TODAY
to unlock your recommendations.

Already have an account? Sign In

  • Worker using the Milwaukee Tool SWITCH PACK drain cleaner

    Pipeline profits: Drain cleaning, pipe inspection create opportunities

    Drain cleaning and inspection services offer lucrative...
    Green Plumbing and Mechanical
    By: Nicole Krawcke
  • Uponor employee, Arturo Moreno

    The reinvestment in American manufacturing and training

    Plumbing & Mechanical Chief Editor Nicole Krawcke and...
    Plumbing News
    By: Nicole Krawcke and Natalie Forster
  • March 2024 Women in Plumbing hero image of woman engineer overlayed by circle of hexagon shapes with numbers from 1 to 10

    Celebrating 10 Influential Women in the Plumbing Industry

    Celebrating Women's History Month and Women in...
    Plumbing News
    By: Nicole Krawcke
close

1 COMPLIMENTARY ARTICLE(S) LEFT

Loader

Already a Registered User? Sign in now.

Subscribe For Free!
  • eNewsletters
  • Online Registration
  • Subscription Customer Service
  • eMagazine
  • Manage My Preferences

IPEX celebrates grand opening of new Florida distribution center

IPEX celebrates grand opening of new Florida distribution center

Bell & Gossett Illustrates Path to Net-zero at AHR Expo

Bell & Gossett Illustrates Path to Net-zero at AHR Expo

AI can boost efficiency and profitability for plumbing, HVAC contractors

AI can boost efficiency and profitability for plumbing, HVAC contractors

NIBCO Press Solutions

NIBCO Press Solutions

More Videos

Sponsored Content

Sponsored Content is a special paid section where industry companies provide high quality, objective, non-commercial content around topics of interest to the Plumbing & Mechanical audience. All Sponsored Content is supplied by the advertising company and any opinions expressed in this article are those of the author and not necessarily reflect the views of Plumbing & Mechanical or its parent company, BNP Media. Interested in participating in our Sponsored Content section? Contact your local rep!

close
  • J.J. Keller CMV vehicles on road
    Sponsored byJ. J. Keller & Associates, Inc.

    The dash cam game-changer for small business safety

Popular Stories

The interior of a government building.

President Trump signs executive order promoting skilled trades and apprenticeships

Figure 1 is a sketch of the flow problems of the current plumbing system.

Hydronic heating glitch solved: Why adding a circulator won't fix primary loop flow issue

Underfloor heating installation with drain sewer hole in bathroom close up on water floor heating.

Using hydronics to leverage time-of-use electrical rates

PM BEMIS June 25 Free Webinar: Optimizing Plumbing Solutions for Single-Family, Multi-Family & Public Spaces

Events

November 13, 2024

Future Proofing MEP: Navigating the 2026 High Efficiency Water Heating Standards

Join our deep dive into DOE’s new standards so you can future-proof your MEP practice.

EARN: 0.1 ASPE CEU; 1 AIA LU/HSW; 0.1 IACET CEU*; 1 PDH

View All Submit An Event

Poll

Will business be up or down in 2025?

Do you anticipate business in 2025 to be up or down in comparison to 2024?
View Results Poll Archive

Products

The Water Came To A Stop

The Water Came To A Stop

See More Products

Download the FREE Water Conservation, Quality & Safety eBook: Plumbing Trends Increasing Safe Water Availability

Related Articles

  • Thermostat

    The safest way to prevent hot water scalding

    See More
  • Hot water recirculation

    Benefits of hot water recirculation

    See More
  • The DIRTMAG PRO separates both ferrous and non-ferrous debris

    The gold standard: Protection from dissolved oxygen and debris in hydronic systems

    See More

Events

View AllSubmit An Event
  • November 13, 2024

    Future Proofing MEP: Navigating the 2026 High Efficiency Water Heating Standards

    Join our deep dive into DOE’s new standards so you can future-proof your MEP practice. EARN: 0.1 ASPE CEU; 1 AIA LU/HSW; 0.1 IACET CEU*; 1 PDH
View AllSubmit An Event
×
Fixed orifice, 3/4-inch.
Flow versus pressure drop chart, fixed orifice.
Variable orifice balancing valve with differential pressure tool hook-up.
Variable orifice valve with knob set at index 2.
Flow versus pressure drop chart, variable orifice.
Direct reading manual balancing valve.
Pressure independent balancing valves.
Characterized cartridge assembly for 10 gpm.
Field adjustable thermal balancing valve.

Keep your content unclogged with our newsletters!

Stay in the know on the latest plumbing & piping industry trends.

JOIN TODAY!
  • RESOURCES
    • Advertise
    • Contact Us
    • Directories
    • Store
    • Want More
    • Supply House Times
  • SIGN UP TODAY
    • Create Account
    • eMagazine
    • eNewsletter
    • Customer Service
    • Manage Preferences
  • SERVICES
    • Marketing Services
    • Reprints
    • Market Research
    • List Rental
    • Survey/Respondent Access
  • STAY CONNECTED
    • LinkedIn
    • Facebook
    • Instagram
    • YouTube
    • X (Twitter)
  • PRIVACY
    • PRIVACY POLICY
    • TERMS & CONDITIONS
    • DO NOT SELL MY PERSONAL INFORMATION
    • PRIVACY REQUEST
    • ACCESSIBILITY

Copyright ©2025. All Rights Reserved BNP Media.

Design, CMS, Hosting & Web Development :: ePublishing

search
cart
facebook instagram twitter linkedin youtube
  • Sign In
  • Create Account
  • Sign Out
  • My Account
  • NEWS
  • PRODUCTS
  • CONTRACTORS
    • BATH & KITCHEN PRO
    • BUSINESS MANAGEMENT
    • HIGH EFFICIENCY HOMES
    • TECHNOLOGY
    • WATER TREATMENT
    • PMC COLUMNS
      • Dave Yates: Contractor’s Corner
      • John Siegenthaler: Hydronics Workshop
      • Kenny Chapman: The Blue Collar Coach
      • Matt Michel: Service Plumbing Pros
      • Scott Secor: Heating Perceptions
  • ENGINEERS
    • CONTINUING EDUCATION
    • DECARBONIZATION | ELECTRIFICATION
    • FIRE PROTECTION
    • GEOTHERMAL | SOLAR THERMAL
    • PIPING | PLUMBING | PVF
    • PME COLUMNS
      • Christoph Lohr: Strategic Plumbing Insights
      • David Dexter: Plumbing Talking Points
      • James Dipping: Engineer Viewpoints
      • John Seigenthaler: Renewable Heating Design
      • Lowell Manalo: Plumbing Essentials
      • Misty Guard: Guard on Compliance
  • RADIANT & HYDRONICS
    • RADIANT COMFORT REPORT
    • THE GLITCH & THE FIX
  • INSIGHTS
    • CODES
    • GREEN PLUMBING & MECHANICAL
    • PROJECT PROFILES
    • COLUMNS
      • Codes Corner
      • Natalie Forster: Editorial Opinion
      • Guest Editorial
    • SPONSOR INSIGHTS
  • MEDIA
    • PODCASTS
    • VIDEOS
    • WEBINARS
  • RESOURCES
    • INDUSTRY CALENDAR
    • DIRECTORIES
    • EBOOKS
    • PM BOOKSTORE
    • CE CENTER
    • MARKET RESEARCH
    • CLASSIFIEDS
  • EMAGAZINE
    • EMAGAZINE
    • ARCHIVE ISSUES
    • CONTACT
    • ADVERTISE
    • PME EMAGAZINE ARCHIVES
  • SIGN UP!