search
cart
facebook instagram twitter linkedin youtube
  • Sign In
  • Create Account
  • Sign Out
  • My Account
  • NEWS
  • PRODUCTS
    • FEATURED PRODUCTS
  • CONTRACTORS
    • BATH & KITCHEN PRO
    • BUSINESS MANAGEMENT
    • HIGH EFFICIENCY HOMES
    • TECHNOLOGY
    • WATER TREATMENT
    • PMC COLUMNS
      • Dave Yates: Contractor’s Corner
      • John Siegenthaler: Hydronics Workshop
      • Kenny Chapman: The Blue Collar Coach
      • Matt Michel: Service Plumbing Pros
      • Scott Secor: Heating Perceptions
  • ENGINEERS
    • CONTINUING EDUCATION
    • DECARBONIZATION | ELECTRIFICATION
    • FIRE PROTECTION
    • GEOTHERMAL | SOLAR THERMAL
    • PIPING | PLUMBING | PVF
    • PME COLUMNS
      • Christoph Lohr: Strategic Plumbing Insights
      • David Dexter: Plumbing Talking Points
      • James Dipping: Engineer Viewpoints
      • John Seigenthaler: Renewable Heating Design
      • Lowell Manalo: Plumbing Essentials
      • Misty Guard: Guard on Compliance
  • RADIANT & HYDRONICS
    • RADIANT COMFORT REPORT
    • THE GLITCH & THE FIX
  • INSIGHTS
    • CODES
    • GREEN PLUMBING & MECHANICAL
    • PROJECT PROFILES
    • COLUMNS
      • Codes Corner
      • Natalie Forster: Editorial Opinion
      • Guest Editorial
  • MEDIA
    • EBOOKS
    • PODCASTS
    • VIDEOS
    • WEBINARS
  • RESOURCES
    • INDUSTRY CALENDAR
    • DIRECTORIES
    • PM BOOKSTORE
    • CE CENTER
    • MARKET RESEARCH
    • CLASSIFIEDS
  • EMAGAZINE
    • EMAGAZINE
    • ARCHIVE ISSUES
    • CONTACT
    • ADVERTISE
    • PME EMAGAZINE ARCHIVES
  • SIGN UP!
ColumnsRadiant & HydronicsJohn Siegenthaler: Hydronics Workshop

John Siegenthaler: Tell me more about 'nubbed' foam panels

By John Siegenthaler, P.E.
Figure 1. No pull ties, bag ties or plastic staples are needed to hold the tubing in place

Figure 1. No pull ties, bag ties or plastic staples are needed to hold the tubing in place — it’s held there by friction and the slightly concave surfaces of the staggered nubs. Images provided by: John Siegenthaler

February 26, 2018

There are several North American manufacturers currently offering expanded polystyrene (EPS) panels that hold PEX, PEX-AL-PEX or PERT tubing between staggered rows of foam “nubs.” These panels are available in various thicknesses and compressive strengths to accommodate slabs in a wide range of buildings. The figure below shows a generic representation of how these panels hold tubing in heated slabs.

The concept is simple: Lay out the nominal 2-by-4-foot panels on a flat and stable base. The edges of the panels lock together to quickly form a tidy grid. Next, uncoil the PEX tubing and “walk” it into place (e.g., press it down with your shoe) between the nubs. The nubs usually allow spacing that is a multiple of 3 inches (6 inches, 9 inches, 12 inches, etc.).

No pull ties, bag ties or plastic staples are needed to hold the tubing in place — it’s held there by friction and the slightly concave surfaces of the staggered nubs. Once the tubing is placed and pressure tested, a layer of welded wire reinforcing is laid over the top, and a concrete slab that’s at least 3 inches thick is poured over the assembly.

This is all clever, convenient and versatile. But what’s missing is thermal performance data for heated slabs installed over these panels.

None of the manufacturers that I researched publish information on the heat output versus average water temperature from slabs poured over their insulating panels. Without such information, how are designers supposed to evaluate the performance of different tube sizes, tube spacing, slab thicknesses and finish floor materials? See Figure 1 above.

Perhaps these manufacturers view that information as someone else’s responsibility. After all, competing manufacturers of flat foam panels don’t publish this type of information.

But there’s a difference. Unlike flat foam products that have many potential uses in construction (such as insulated wall sheathing, roofing insulation, basement wall insulation, etc.), nubbed foam panels are specifically made for holding tubing in predetermined positions and spacing within heated slabs. That’s their sole application.

Designers considering nubbed panel products need information on how these slabs will perform. Otherwise, they’re left to make guesses based on information that doesn’t include the specific nuances of these panels.

 

Assumption vs. assurance

One might assume that the thermal performance of a heated slab having specified thickness, tube size and tube spacing, and poured over nubbed panels, should be about the same as that of a slab with the same thickness, tubing size and tube spacing poured over flat insulation panels having the same R-value. It’s an understandable assumption, and currently about the only possible comparison, but is it accurate?

I think there are enough differences in the “thermal geometry” between these two approaches to cast doubt on such an assumption.

For starters, with nubbed panel systems, the tubing is held at the bottom of the slab rather than approximately halfway up through the thickness of the slab.

I researched the effect of tubing depth in slabs on thermal performance several years ago and wrote about it in PM in the May 2000 issue (“Depth Perception”).

I used a computer simulation technique called finite element analysis to estimate the surface temperature and upward heat output of concrete slabs where the only variable was tubing depth. I found that tubing at the bottom of a 4-inch slab versus at the mid-height of the slab requires higher water temperature to generate the same upward heat output.


Designers considering nubbed panel products need information on how these slabs will perform. Otherwise, they’re left to make guesses based on information that doesn’t include the specific nuances of these panels.


At an upward heat output of 15 Btu/h per square foot, tubing at the bottom of the slab needs water that’s about 7° F warmer than required if the tubing were at the mid-thickness of the slab. That 7° was of little concern in the days when conventional boilers, operating well above the dew point of their flue gases, supplied heat to floor slabs through mixing devices. Just turn up the temperature of the mixing device, leave the boiler alone and call it a day.

However, increasing the water temperature by a few degrees can have a significant impact on the performance of contemporary hydronic heat sources such as mod/con boilers, heat pumps (geothermal water-to-water, and air-to-water) and solar thermal collectors. It also limits the temperature cycling range of thermal storage tanks heated by biomass boilers.

In short, higher supply water temperature is not desirable and shouldn’t be dismissed as inconsequential.

 

Foam vs. concrete

Just about everyone reading this knows that the R-value of expanded polystyrene (EPS) foam is much higher than that of concrete. The R-value of 1.5 lb/ft3 density EPS is about 5.0 (°F•hr•ft2/Btu) per inch of thickness. The R-value of standard structural concrete is about 0.1 (°F•hr•ft2/Btu) per inch of thickness. That’s a 50:1 ratio in the ability to move heat by conduction.

So what? Isn’t insulation supposed to have a much higher R-value than concrete?

Of course it is, especially when it comes to limiting downward heat loss from the slab.

But think about the hundreds of small surface areas where the tubing contacts the side of each foam nub. In a standard slab, the tubing would be dissipating heat through concrete rather than through foam over these area. The foam is not going to move heat away from the tubing as fast as concrete.

Furthermore, the cross-sectional area of the nubs increases relative to that of concrete as heat moves laterally away from the tubing. The fin efficiency of the combined materials decreases based on more foam and less concrete.

As a comparison, imagine a fin-tube baseboard element where the fins where mostly aluminum where they contact the tubing, but become a mixture of aluminum and foam farther away from the tubing. The farther away from the fin, the greater the proportion of foam. How would you expect that fin-tube element to perform relative to one with fins that are 100% aluminum?

Beyond the contact area between the tubing and nubs is the volume of the foam nubs above the base insulation thickness, and in areas between the rows of tubing. In a standard slab, the total volume of these foam nubs would be concrete rather than EPS. That’s also going to slow lateral heat diffusion away from the tubing.

 

Figure it out

One way to assess the differences would be to construct two otherwise identical test slabs, one with the nubbed foam panels and the other with flat underside insulation of the same R-value. Use identical tube sizes and spacings in both panels. Then, run some accurate heat transfer tests under identical surrounding conditions.

If the flow rate were held constant, and the inlet and outlet temperatures of the water through the test slabs were accurately measured, the multiplication of flow rate times the temperature drop through the test slab would be proportional to the heat output.

Another approach would require three-dimensional finite element analysis of a small portion of the assembly. Software that can do this is available, and there are consulting companies that specialize in its use. That software is now routinely used in many other industries to study heat transfer in three-dimensional assemblies. Why shouldn’t it be used for creating design tools for accurately predicting the performance of heated floors over specialty insulation products?

I’ll close with a position and a plea.

My position is that I’m not against using nubbed foam panels in floor heating systems. Quite the contrary — I see them as convenient and versatile. They are legitimate products in an ever-expanding radiant panel marketplace.

My plea is to manufacturers offering these products: Please consider how you can produce accurate design tools for heated slabs placed over your panels. Designers typically get one shot at properly specifying heated slabs. When “guesstimates” are cast in concrete, second chances are exceptionally rare and extremely expensive.

 

This article was originally titled, “Tell me more, please” in the February 2018 print edition of Plumbing & Mechanical.

KEYWORDS: floor warming hydronic heat PEX tubing radiant

Share This Story

Looking for a reprint of this article?
From high-res PDFs to custom plaques, order your copy today!

John siegenthaler 200x200

John Siegenthaler, P.E., is a consulting engineer and principal of Appropriate Designs in Holland Patent, New York. In partnership with HeatSpring, he has developed several online courses that provide in-depth, design-level training in modern hydronics systems, air-to-water heat pumps and biomass boiler systems. Additional information and resources for hydronic system design are available on Siegenthaler’s website,  www.hydronicpros.com.

Recommended Content

JOIN TODAY
to unlock your recommendations.

Already have an account? Sign In

  • 2025 Next Gen ALL-STARS hero 1440

    2025 Next Gen All Stars: Top 20 Under 40 Plumbing Professionals

    This year’s group of NextGen All-Stars is full of young...
    Plumbing & Mechanical Contractor
    By: Kristen R. Bayles
  • Worker using the Milwaukee Tool SWITCH PACK drain cleaner

    Pipeline profits: Drain cleaning, pipe inspection create opportunities

    Drain cleaning and inspection services offer lucrative...
    Green Plumbing and Mechanical
    By: Nicole Krawcke
  • Uponor employee, Arturo Moreno

    The reinvestment in American manufacturing and training

    Plumbing & Mechanical Chief Editor Nicole Krawcke and...
    Plumbing News
    By: Nicole Krawcke and Natalie Forster
Manage My Account
  • eNewsletters
  • Online Registration
  • Subscription Customer Service
  • eMagazine
  • Manage My Preferences

More Videos

Popular Stories

Hot water pipes

Campus shutdown at Oakland University exposes hidden risks of aging hot-water infrastructure

Floor heating manifold cabinet with flowmeter and PEX pipe.

Elegance extended: How to use the homerun system of connecting heat emitters

Industrial pressure gauge on a tank.

From cutting edge to classic: How to modernize outdated pneumatic control systems

Poll

Will business be up or down in 2025?

Do you anticipate business in 2025 to be up or down in comparison to 2024?
View Results Poll Archive

Products

The Water Came To A Stop

The Water Came To A Stop

See More Products
eBook | 2025 Radiant & Hydronics All Stars

Related Articles

  • John Siegenthaler: 5 more products the hydronics industry needs

    See More
  • contemporary approach to providing fresh air

    John Siegenthaler: Don't forget about ventilation

    See More
  • ductless mini-split heat pump system

    John Siegenthaler: Air-to-water heat pumps offer more than ductless

    See More

Related Products

See More Products
  • Classic Hydronics - How To Get The Most From Those Older Hot-Water Heating Systems

See More Products

Events

View AllSubmit An Event
  • May 29, 2014

    Coffee with Caleffi and John Siegenthaler: Air Source and Water Source Heat Pump Systems.

    Coffee with Caleffi will be hosted by John Siegenthaler on May 29, 2014.
  • June 10, 2025

    HVAC and Plumbing Marketing 101: How to Stand Out, Get Hired, and Get More Jobs

    On Demand It’s not enough to just get more leads. You need to get more of your ideal customers. And this webinar will show you how. 
View AllSubmit An Event
×

Keep your content unclogged with our newsletters!

Stay in the know on the latest plumbing & piping industry trends.

JOIN TODAY!
  • RESOURCES
    • Advertise
    • Contact Us
    • Directories
    • Store
    • Want More
    • Supply House Times
  • SIGN UP TODAY
    • Create Account
    • eMagazine
    • eNewsletter
    • Customer Service
    • Manage Preferences
  • SERVICES
    • Marketing Services
    • Reprints
    • Market Research
    • List Rental
    • Survey/Respondent Access
  • STAY CONNECTED
    • LinkedIn
    • Facebook
    • Instagram
    • YouTube
    • X (Twitter)
  • PRIVACY
    • PRIVACY POLICY
    • TERMS & CONDITIONS
    • DO NOT SELL MY PERSONAL INFORMATION
    • PRIVACY REQUEST
    • ACCESSIBILITY

Copyright ©2025. All Rights Reserved BNP Media.

Design, CMS, Hosting & Web Development :: ePublishing