• Sign In
  • Create Account
  • Sign Out
  • My Account
  • NEWS
  • PRODUCTS
  • CONTRACTORS
  • ENGINEERS
  • RADIANT & HYDRONICS
  • INSIGHTS
  • MEDIA
  • RESOURCES
  • EMAGAZINE
  • SIGN UP!
cart
facebook instagram twitter linkedin youtube
  • CONTRACTORS
  • BATH & KITCHEN PRO
  • BUSINESS MANAGEMENT
  • HIGH EFFICIENCY HOMES
  • TECHNOLOGY
  • WATER TREATMENT
  • PMC COLUMNS
  • PMC COLUMNS
  • Dave Yates: Contractor’s Corner
  • John Siegenthaler: Hydronics Workshop
  • Kenny Chapman: The Blue Collar Coach
  • Matt Michel: Service Plumbing Pros
  • Scott Secor: Heating Perceptions
  • ENGINEERS
  • CONTINUING EDUCATION
  • DECARBONIZATION | ELECTRIFICATION
  • FIRE PROTECTION
  • GEOTHERMAL | SOLAR THERMAL
  • PIPING | PLUMBING | PVF
  • PME COLUMNS
  • PME COLUMNS
  • Christoph Lohr: Strategic Plumbing Insights
  • David Dexter: Plumbing Talking Points
  • James Dipping: Engineer Viewpoints
  • John Seigenthaler: Renewable Heating Design
  • Lowell Manalo: Plumbing Essentials
  • Misty Guard: Guard on Compliance
  • RADIANT & HYDRONICS
  • RADIANT COMFORT REPORT
  • THE GLITCH & THE FIX
  • INSIGHTS
  • CODES
  • GREEN PLUMBING & MECHANICAL
  • PROJECT PROFILES
  • COLUMNS
  • SPONSOR INSIGHTS
  • COLUMNS
  • Codes Corner
  • Natalie Forster: Editorial Opinion
  • Guest Editorial
  • MEDIA
  • PODCASTS
  • VIDEOS
  • WEBINARS
  • RESOURCES
  • INDUSTRY CALENDAR
  • DIRECTORIES
  • EBOOKS
  • PM BOOKSTORE
  • CE CENTER
  • MARKET RESEARCH
  • CLASSIFIEDS
  • EMAGAZINE
  • EMAGAZINE
  • ARCHIVE ISSUES
  • CONTACT
  • ADVERTISE
  • PME EMAGAZINE ARCHIVES
search
cart
facebook instagram twitter linkedin youtube
  • Sign In
  • Create Account
  • Sign Out
  • My Account
  • NEWS
  • PRODUCTS
  • CONTRACTORS
    • BATH & KITCHEN PRO
    • BUSINESS MANAGEMENT
    • HIGH EFFICIENCY HOMES
    • TECHNOLOGY
    • WATER TREATMENT
    • PMC COLUMNS
      • Dave Yates: Contractor’s Corner
      • John Siegenthaler: Hydronics Workshop
      • Kenny Chapman: The Blue Collar Coach
      • Matt Michel: Service Plumbing Pros
      • Scott Secor: Heating Perceptions
  • ENGINEERS
    • CONTINUING EDUCATION
    • DECARBONIZATION | ELECTRIFICATION
    • FIRE PROTECTION
    • GEOTHERMAL | SOLAR THERMAL
    • PIPING | PLUMBING | PVF
    • PME COLUMNS
      • Christoph Lohr: Strategic Plumbing Insights
      • David Dexter: Plumbing Talking Points
      • James Dipping: Engineer Viewpoints
      • John Seigenthaler: Renewable Heating Design
      • Lowell Manalo: Plumbing Essentials
      • Misty Guard: Guard on Compliance
  • RADIANT & HYDRONICS
    • RADIANT COMFORT REPORT
    • THE GLITCH & THE FIX
  • INSIGHTS
    • CODES
    • GREEN PLUMBING & MECHANICAL
    • PROJECT PROFILES
    • COLUMNS
      • Codes Corner
      • Natalie Forster: Editorial Opinion
      • Guest Editorial
    • SPONSOR INSIGHTS
  • MEDIA
    • PODCASTS
    • VIDEOS
    • WEBINARS
  • RESOURCES
    • INDUSTRY CALENDAR
    • DIRECTORIES
    • EBOOKS
    • PM BOOKSTORE
    • CE CENTER
    • MARKET RESEARCH
    • CLASSIFIEDS
  • EMAGAZINE
    • EMAGAZINE
    • ARCHIVE ISSUES
    • CONTACT
    • ADVERTISE
    • PME EMAGAZINE ARCHIVES
  • SIGN UP!
Columns

Hydronics Workshop:
It All Adds Up…

By John Siegenthaler, P.E.
January 1, 2010
Tracking energy flows in a ground-source heat pump.

Figure 1.


Ground-source heat pump systems were a hot topic in HVAC discussions during 2009. All signs indicate that 2010 will be another banner year for this technology.

Hydronic heating pros should be familiar with what GSHP systems have to offer. Specifically, how can water-to-water ground-source heat pumps be integrated with modern hydronic heating? To that end, this and several future columns will be devoted to the subject. We’ll start by looking at the basic thermodynamics of a water-to-water GSHP. After that, we’ll discuss how this heat source is optimally matched with other state-of-the-art hydronic hardware.

Figure 2.

Endless Loop

All heat pumps move heat from a material at a lower temperature to a material at a higher temperature. The “source” from which lower-temperature heat is taken can be just about anything. Many heat pumps extract heat from outside air and are appropriately called “air-source” heat pumps. Ground-source heat pumps extract heat from ground water or a fluid circulated through tubing buried in the ground.

Ground-source heat pumps operate using a standard vapor-compression refrigeration cycle. As the refrigerant moves around the cycle, it changes from vapor to liquid and vice versa in a continuous process. When liquid refrigerant evaporates, it absorbs heat from its surroundings. Conversely, when refrigerant vapor condenses back to a liquid, it releases heat to its surroundings.

Figure 1 shows the principle components in a water-to-water GSHP and gives the condition of the refrigerant at several locations within the system.

Liquid refrigerant enters the evaporator as a low-temperature, low-pressure liquid. It passes across the surface of copper tubing through which water or a mixture of water and antifreeze flows. Because the liquid refrigerant is several degrees colder than the water, it absorbs heat from it. The absorbed heat causes the cold refrigerant to vaporize.

Figure 3.

The cool refrigerant gas then passes to the electrically operated compressor, where its pressure and temperature are greatly increased. The hot refrigerant gas line leaving the compressor can be quite hot (140 degrees F to 170 degrees F).

The hot gas flows on to the condenser, where it passes across another copper coil carrying water from the hydronic distribution system. Because the refrigerant gas is warmer than the water, heat moves from the gas to the water. This causes the refrigerant to condense back to a liquid, but still remain at a relatively high pressure.

Finally, the liquid refrigerant flows from the condenser to the thermal expansion valve. As it flows through this valve, its pressure is reduced and its temperature immediately drops. The refrigerant is now back to the same condition it started from at the base of the evaporator. It’s ready to repeat this cycle as long as the compressor is running.

Although the specific components used in water-to-water heat pumps vary from one manufacturer to another, the goal is always the same: to move heat from the low-temperature “source” to the higher-temperature “load” using as little electrical energy as possible.

Energy In Equals Energy Out

Ground-source water-to-water heat pumps live by the first law of thermodynamics. Simply stated, the total energy flowing into a heat pump always equals the total energy flowing out of that heat pump.

Some energy comes in as low-temperature heat from the “source” (i.e., ground loop, ground water, etc). Energy also enters the heat pump in the form of electricity to run the compressor. These two energy input streams always add together to form the energy output stream, which is imparted to the stream of water flowing through the heat pump’s condenser.

Mathematically, this energy balance can be written as Formula 1.

Formula 1

Where:
Qout = rate of heat output from heat pump condenser (Btu/hr.)
Qsource = rate of heat absorption from low temperature source (Btu/hr.)
Qelectrical = rate of electrical energy input to operate heat pump (Btu/hr.)

You can visualize these energy streams as shown in Figure 2.

How's It Running?

When dealing with boilers, we often discuss thermal efficiency. It’s the ratio of the heat output divided by the heating value of the fuel being consumed. The higher the efficiency the better, but no combustion-based boiler will ever meet or exceed 100 percent thermal efficiency.

With heat pumps, the performance indicator is called coefficient of performance (or COP for short). COP is the ratio of the heat output rate from the heat pump divided by the electrical energy input rate to operate the heat pump. Mathematically, it’s just a ratio as given by Formula 2.

Formula 2

When both the top and bottom of the fraction have the same units, they cancel out to give a pure number. Since we usually measure electrical power in watts rather than Btu/hr., we can modify Formula 2 so that watts can be entered and then converted to Btu/hr. The result of this formula (Formula 3) is a pure number (e.g., it has no units).

Formula 3

Where:
Qout = rate of heat output from heat pump condenser (Btu/hr.)
W = watts of electrical power entering heat pump

Figure 4.

The COP of a water-to-water heat pump is very dependent on the current operating conditions (e.g., the entering source water temperature and its flow rates, as well as the temperature of water returning to the heat pump from the load). Figure 3 shows how the COP of a modern water-to-water heat pump varies as a function of both entering source water temperature and entering load water temperature (ELWT).

The heat pump’s COP drops quickly as the temperature of the source water from which heat is extracted decreases. It also drops as the temperature at which the load operated increases. Thus, low-temperature heating loads such as heated floor slabs with low-resistance coverings, or no coverings, are a good match for water-to-water GSHP systems.

Any Two Out Of Three

If any two of the three energy flows present in an operating heat pump are known, the third energy flow can be determined by simple addition or subtraction. For example, if you need to know the heat output of a ground-source heat pump, you could determine the rate of heat coming to the heat pump from the source water and add this to rate of electrical energy input to operate the unit. For a water-to-water heat pump, you could also measure the flow rate and temperature change of water as it passes through the condenser and directly calculate the rate of heat delivery using Formula 4.

Formula 4

Where:
D = density of water passing through condenser (lb./ft.3)
c = specific heat of water passing though condenser (Btu/lb./degree F)
fL = flow rate of water passing through condenser (gpm)
TLout = temperature of water leaving condenser (degrees F)
TLin = temperature of water entering condenser (degrees F)

Figure 5.

Because many GSHPs are water-to-air units rather than water-to-water, it’s somewhat customary to combine the rate of heat input at the evaporator with the rate of electrical energy input to obtain the heat output. Figure 4 shows the necessary operating conditions that need to be measured to use this method. It also gives the formulas necessary to convert these measurements into a heat output number.

The formulas require the density and specific heat of the fluid flowing through the evaporator. These can be read from the graph in Figure 4. Use the average of the evaporator inlet and outlet temperature to estimate density. The specific heat of water and glycol-based solutions doesn’t vary much within the narrow temperature range at which it is used in these systems. Thus, it can be treated as a constant (c for water = 1 Btu/lb./degree F, and c for a 30 percent solution of propylene glycol is 0.92 Btu/lb./degree F).

If you have a wattmeter, just take the measurement. If you don’t have such an instrument, you can use a standard multimeter along with multiplication to get a good estimate of input wattage. Measure the voltage and current to the heat pump, then convert using Formula 5.

Figure 6.

The value 0.95 represents the power factor of a typical scroll compressor as used in most modern GSHPs.

You can also use this measured data to calculate the COP of the heat pump as shown in Figure 5.

Getting accurate temperature measurements (within +/- 0.1 degree) is possible with modern profession instruments that use strap-on RTD, thermistor or thermocouple probes. Don’t rely on an infrared gun to “shoot” these temperatures. They just aren’t accurate enough for the narrow temperature range being measured.

Getting flow rates is usually more of a challenge than getting accurate temperatures. If the system happens to have an accurate flow meter installed in either the earth loop or hydronic distribution system, getting a flow reading is easy. Remember, you only need flow on one side of a water-to-water heat pump to use the formulas given above. Too bad most GSHP installers won’t spring for the cost of a flow meter.

An “indirect” way of estimating flow rate makes use of special fittings called “Pete’s Plugs.” These devices, shown in Figure 6, are commonly installed at the source flow connections on the evaporator. They allow a narrow temperature probe or pressure probe to be temporarily inserted through a neoprene gasket. When the probe is removed, the gasket is “self-healing.” The brass cap is screwed on to prevent any drips when probes are not inserted.

Once the pressure drop across the evaporator coil is known, the corresponding flow rate can be estimated from a graph supplied by the heat pump’s manufacturer. This method is simple and relatively inexpensive, but not as accurate as reading flow directly from a quality flow meter. Still, it’s an effective technique for field-estimated performance.

Here’s an example: A technician uses his instruments to take the temperature, differential pressure and electrical readings shown in Figure 7. He also references a manufacturer’s graph of the pressure drop across the evaporator coil as a function of flow rate. He looks up the density of the 30 percent propylene glycol solution used in the earth loop and finds it to be 64.5 lb./ft.3 at an average temperature of 41 degrees F. The specific heat of this solution is 0.92 Btu/lb./degree F. Use these readings and physical properties to determine:
    a. The heat output from the heat pump; and
    b. The current COP of the heat pump.

Start by calculating the electrical wattage to the heat pump:

Next, estimate the flow rate through the evaporator using the pressure drop vs. flow rate curve provided by the manufacturer. For the graph in Figure 7, a pressure drop of 3.0 psi corresponds to a flow rate of 7.5 gpm.

At this point, we know all the numbers necessary to calculate both heat output and COP.

The heating output is:

The COP is:

Figure 7.

Do The Math:

These formulas and their associated data can turn the measured thermal and electrical operating characteristics of the heat pump into performance numbers. Those numbers can then be compared to the manufacturer’s published performance data to verify if the unit is operating reasonably close to its rated performance.

Significant differences between measured performance and rated performance (under the same operation conditions) would indicate that additional diagnostics are in order. If you’re interested in applying these heat sources, you should know how to verify they are operating properly.

Links

  • Radiant & Hydronics e-News
  • Contact Plumbing & Mechanical
  • 2009 Hydronics Know How II DVD

Share This Story

Looking for a reprint of this article?
From high-res PDFs to custom plaques, order your copy today!

Siegenthaler

John Siegenthaler, P.E., is a consulting engineer and principal of Appropriate Designs in Holland Patent, New York. In partnership with HeatSpring, he has developed several online courses that provide in-depth, design-level training in modern hydronics systems, air-to-water heat pumps and biomass boiler systems. Additional information and resources for hydronic system design are available on Siegenthaler’s website,  www.hydronicpros.com.

Recommended Content

JOIN TODAY
to unlock your recommendations.

Already have an account? Sign In

  • Worker using the Milwaukee Tool SWITCH PACK drain cleaner

    Pipeline profits: Drain cleaning, pipe inspection create opportunities

    Drain cleaning and inspection services offer lucrative...
    Plumbing News
    By: Nicole Krawcke
  • Uponor employee, Arturo Moreno

    The reinvestment in American manufacturing and training

    Plumbing & Mechanical Chief Editor Nicole Krawcke and...
    Plumbing News
    By: Nicole Krawcke and Natalie Forster
  • March 2024 Women in Plumbing hero image of woman engineer overlayed by circle of hexagon shapes with numbers from 1 to 10

    Celebrating 10 Influential Women in the Plumbing Industry

    Celebrating Women's History Month and Women in...
    Plumbing News
    By: Nicole Krawcke
Subscribe For Free!
  • eNewsletters
  • Online Registration
  • Subscription Customer Service
  • eMagazine
  • Manage My Preferences

IPEX celebrates grand opening of new Florida distribution center

IPEX celebrates grand opening of new Florida distribution center

AI can boost efficiency and profitability for plumbing, HVAC contractors

AI can boost efficiency and profitability for plumbing, HVAC contractors

Bell & Gossett Illustrates Path to Net-zero at AHR Expo

Bell & Gossett Illustrates Path to Net-zero at AHR Expo

NIBCO Press Solutions

NIBCO Press Solutions

More Videos

Sponsored Content

Sponsored Content is a special paid section where industry companies provide high quality, objective, non-commercial content around topics of interest to the Plumbing & Mechanical audience. All Sponsored Content is supplied by the advertising company and any opinions expressed in this article are those of the author and not necessarily reflect the views of Plumbing & Mechanical or its parent company, BNP Media. Interested in participating in our Sponsored Content section? Contact your local rep!

close
  • J.J. Keller CMV vehicles on road
    Sponsored byJ. J. Keller & Associates, Inc.

    The dash cam game-changer for small business safety

Popular Stories

Underfloor heating installation with drain sewer hole in bathroom close up on water floor heating.

Using hydronics to leverage time-of-use electrical rates

Watts Nexa mobile image

Behind the Wall: Where smart plumbing gets smarter

Six tankless water heaters that feed the nutraceutical manufacturer’s operations.

How to deliver large volumes of hot water quickly and intermittently

PMCE Home-X April 29 Free Webinar: From Legacy to Leadership: Preparing Your Home Services Business for the Next Generation

Events

November 13, 2024

Future Proofing MEP: Navigating the 2026 High Efficiency Water Heating Standards

Join our deep dive into DOE’s new standards so you can future-proof your MEP practice.

EARN: 0.1 ASPE CEU; 1 AIA LU/HSW; 0.1 IACET CEU*; 1 PDH

View All Submit An Event

Poll

Will business be up or down in 2025?

Do you anticipate business in 2025 to be up or down in comparison to 2024?
View Results Poll Archive

Products

The Water Came To A Stop

The Water Came To A Stop

See More Products

Download the FREE Water Conservation, Quality & Safety eBook: Plumbing Trends Increasing Safe Water Availability

Related Articles

  • Hydronics Holds It All Together

    See More
  • heating challenges from the floor up or from the ceiling down

    John Siegenthaler: Modern hydronics technology addresses heating challenges from the floor up or from the ceiling down

    See More
  • Something To Look Up To

    See More

Related Products

See More Products
  • what hydronics taught holohan.jpg

    What Hydronics Taught Holohan: A Memoir of Life in the Heating Industry

  • M:\General Shared\__AEC Store Katie Z\AEC Store\Images\Plumbing\new sites\classic_hydronics.gif

    Classic Hydronics - How To Get The Most From Those Older Hot-Water Heating Systems

See More Products

Events

View AllSubmit An Event
  • April 10, 2014

    Workshop: Hydronics for High Efficiency Wood-fired and Pellet-fired Boilers

    Session added to April 9-11 Northeast Biomass Heating Expo.
View AllSubmit An Event
×

Keep your content unclogged with our newsletters!

Stay in the know on the latest plumbing & piping industry trends.

JOIN TODAY!
  • RESOURCES
    • Advertise
    • Contact Us
    • Directories
    • Store
    • Want More
    • Supply House Times
  • SIGN UP TODAY
    • Create Account
    • eMagazine
    • eNewsletter
    • Customer Service
    • Manage Preferences
  • SERVICES
    • Marketing Services
    • Reprints
    • Market Research
    • List Rental
    • Survey/Respondent Access
  • STAY CONNECTED
    • LinkedIn
    • Facebook
    • Instagram
    • YouTube
    • X (Twitter)
  • PRIVACY
    • PRIVACY POLICY
    • TERMS & CONDITIONS
    • DO NOT SELL MY PERSONAL INFORMATION
    • PRIVACY REQUEST
    • ACCESSIBILITY

Copyright ©2025. All Rights Reserved BNP Media.

Design, CMS, Hosting & Web Development :: ePublishing

search
cart
facebook instagram twitter linkedin youtube
  • Sign In
  • Create Account
  • Sign Out
  • My Account
  • NEWS
  • PRODUCTS
  • CONTRACTORS
    • BATH & KITCHEN PRO
    • BUSINESS MANAGEMENT
    • HIGH EFFICIENCY HOMES
    • TECHNOLOGY
    • WATER TREATMENT
    • PMC COLUMNS
      • Dave Yates: Contractor’s Corner
      • John Siegenthaler: Hydronics Workshop
      • Kenny Chapman: The Blue Collar Coach
      • Matt Michel: Service Plumbing Pros
      • Scott Secor: Heating Perceptions
  • ENGINEERS
    • CONTINUING EDUCATION
    • DECARBONIZATION | ELECTRIFICATION
    • FIRE PROTECTION
    • GEOTHERMAL | SOLAR THERMAL
    • PIPING | PLUMBING | PVF
    • PME COLUMNS
      • Christoph Lohr: Strategic Plumbing Insights
      • David Dexter: Plumbing Talking Points
      • James Dipping: Engineer Viewpoints
      • John Seigenthaler: Renewable Heating Design
      • Lowell Manalo: Plumbing Essentials
      • Misty Guard: Guard on Compliance
  • RADIANT & HYDRONICS
    • RADIANT COMFORT REPORT
    • THE GLITCH & THE FIX
  • INSIGHTS
    • CODES
    • GREEN PLUMBING & MECHANICAL
    • PROJECT PROFILES
    • COLUMNS
      • Codes Corner
      • Natalie Forster: Editorial Opinion
      • Guest Editorial
    • SPONSOR INSIGHTS
  • MEDIA
    • PODCASTS
    • VIDEOS
    • WEBINARS
  • RESOURCES
    • INDUSTRY CALENDAR
    • DIRECTORIES
    • EBOOKS
    • PM BOOKSTORE
    • CE CENTER
    • MARKET RESEARCH
    • CLASSIFIEDS
  • EMAGAZINE
    • EMAGAZINE
    • ARCHIVE ISSUES
    • CONTACT
    • ADVERTISE
    • PME EMAGAZINE ARCHIVES
  • SIGN UP!