• Sign In
  • Create Account
  • Sign Out
  • My Account
  • NEWS
  • PRODUCTS
  • CONTRACTORS
  • ENGINEERS
  • RADIANT & HYDRONICS
  • INSIGHTS
  • MEDIA
  • RESOURCES
  • EMAGAZINE
  • SIGN UP!
cart
facebook instagram twitter linkedin youtube
  • CONTRACTORS
  • BATH & KITCHEN PRO
  • BUSINESS MANAGEMENT
  • HIGH EFFICIENCY HOMES
  • TECHNOLOGY
  • WATER TREATMENT
  • PMC COLUMNS
  • PMC COLUMNS
  • Dave Yates: Contractor’s Corner
  • John Siegenthaler: Hydronics Workshop
  • Kenny Chapman: The Blue Collar Coach
  • Matt Michel: Service Plumbing Pros
  • Scott Secor: Heating Perceptions
  • ENGINEERS
  • CONTINUING EDUCATION
  • DECARBONIZATION | ELECTRIFICATION
  • FIRE PROTECTION
  • GEOTHERMAL | SOLAR THERMAL
  • PIPING | PLUMBING | PVF
  • PME COLUMNS
  • PME COLUMNS
  • Christoph Lohr: Strategic Plumbing Insights
  • David Dexter: Plumbing Talking Points
  • James Dipping: Engineer Viewpoints
  • John Seigenthaler: Renewable Heating Design
  • Lowell Manalo: Plumbing Essentials
  • Misty Guard: Guard on Compliance
  • RADIANT & HYDRONICS
  • RADIANT COMFORT REPORT
  • THE GLITCH & THE FIX
  • INSIGHTS
  • CODES
  • GREEN PLUMBING & MECHANICAL
  • PROJECT PROFILES
  • COLUMNS
  • SPONSOR INSIGHTS
  • COLUMNS
  • Codes Corner
  • Natalie Forster: Editorial Opinion
  • Guest Editorial
  • MEDIA
  • PODCASTS
  • VIDEOS
  • WEBINARS
  • RESOURCES
  • INDUSTRY CALENDAR
  • DIRECTORIES
  • EBOOKS
  • PM BOOKSTORE
  • CE CENTER
  • MARKET RESEARCH
  • CLASSIFIEDS
  • EMAGAZINE
  • EMAGAZINE
  • ARCHIVE ISSUES
  • CONTACT
  • ADVERTISE
  • PME EMAGAZINE ARCHIVES
search
cart
facebook instagram twitter linkedin youtube
  • Sign In
  • Create Account
  • Sign Out
  • My Account
  • NEWS
  • PRODUCTS
  • CONTRACTORS
    • BATH & KITCHEN PRO
    • BUSINESS MANAGEMENT
    • HIGH EFFICIENCY HOMES
    • TECHNOLOGY
    • WATER TREATMENT
    • PMC COLUMNS
      • Dave Yates: Contractor’s Corner
      • John Siegenthaler: Hydronics Workshop
      • Kenny Chapman: The Blue Collar Coach
      • Matt Michel: Service Plumbing Pros
      • Scott Secor: Heating Perceptions
  • ENGINEERS
    • CONTINUING EDUCATION
    • DECARBONIZATION | ELECTRIFICATION
    • FIRE PROTECTION
    • GEOTHERMAL | SOLAR THERMAL
    • PIPING | PLUMBING | PVF
    • PME COLUMNS
      • Christoph Lohr: Strategic Plumbing Insights
      • David Dexter: Plumbing Talking Points
      • James Dipping: Engineer Viewpoints
      • John Seigenthaler: Renewable Heating Design
      • Lowell Manalo: Plumbing Essentials
      • Misty Guard: Guard on Compliance
  • RADIANT & HYDRONICS
    • RADIANT COMFORT REPORT
    • THE GLITCH & THE FIX
  • INSIGHTS
    • CODES
    • GREEN PLUMBING & MECHANICAL
    • PROJECT PROFILES
    • COLUMNS
      • Codes Corner
      • Natalie Forster: Editorial Opinion
      • Guest Editorial
    • SPONSOR INSIGHTS
  • MEDIA
    • PODCASTS
    • VIDEOS
    • WEBINARS
  • RESOURCES
    • INDUSTRY CALENDAR
    • DIRECTORIES
    • EBOOKS
    • PM BOOKSTORE
    • CE CENTER
    • MARKET RESEARCH
    • CLASSIFIEDS
  • EMAGAZINE
    • EMAGAZINE
    • ARCHIVE ISSUES
    • CONTACT
    • ADVERTISE
    • PME EMAGAZINE ARCHIVES
  • SIGN UP!
Plumbing & Mechanical Engineer

Secondary Roof Drainage: An Essential of Good Design

August 1, 2007

Roof drainage is one of the fundamental considerations of building design. From the very dawn of building construction, it has been necessary to incorporate some method of gathering and discharging rainwater from the roof of a structure. In many cases, early structures were designed primarily as a shelter from the rain, their very purpose was to redirect rainfall and maintain a particular area as a dry habitat.

These structures were simplistic lean-tos, thatched huts and teepees, all of which served the same purpose. The design of these structures utilized a sloping roof, which naturally shed water without concern for collapse.

The design of many structures still incorporates the use of a sloped roof. The majority of residences utilize truss frame or post and beam construction, with a peaked roof designed to shed water. Many commercial buildings utilize barrel-vaulted roofs or slope the roof support system to direct the water to one side where it can be collected in gutters or open-topped downspouts.

All of these types of structures share a common trait: Because of the simplicity of their design, which allows the water to naturally flow from the roof, there is no need to consider secondary drainage. The primary path is fail-safe, such that even if the gutter or downspout were to reach capacity, the water could still continue to flow from the roof without concern for roof collapse.

Figure 1.

 

Simply Good Practice

Buildings that incorporate flat roofs with centralized roof drains and internal downspouts are another story. In many cases, these buildings have parapet walls that surround the perimeter of the roof. With a parapet wall, it is possible for a roof to retain or “pond” water should the primary roof drainage system fail. Even without parapet walls, the pitch of a flat roof and the location of a drain can be such that failure of the drain would allow water to collect on the roof. Should the ponding of water be severe, the depth of water retained on the roof could potentially exceed the roof’s structural holding capacity. The results would quite simply be a disaster.

No one questions that, in the absence of a fail-safe primary roof drainage system-such as a gutter or open-topped downspout-the incorporation of a secondary method of roof drainage into a building design is simply good practice. The parameters are simple: Provide some means to relieve the buildup of water on the roof prior to the depth of ponding exceeding the structural capacity.

Given that allowing for a secondary method of roof drainage is so intuitive, it would seem unnecessary to prescribe such provisions in the building code. This is not the case. In every model plumbing code in the United States there is a provision requiring the installation of secondary drainage. It was not always so. Codification of secondary roof drainage is a fairly recent phenomenon, having been incorporated into the codes in the late 1980s and early 1990s. As late as 1990, the BOCA Plumbing Code contained no reference to secondary roof drainage. The 1993 BOCA Plumbing Code incorporated the following language:

P-810.2 Roof Design: Roofs shall be designed for the maximum possible depth of water that will pond thereon as determined by the relative levels of roof deck and overflow weirs, scuppers edges, or serviceable drains in combination with the deflected structural elements. In determining the maximum possible depth of water, all primary roof drainage means shall be assumed to be blocked.

Since this was apparently not clear enough, the 1995 International Plumbing Code (formerly BOCA) incorporated an entire section on Secondary (Emergency) Roof Drains. Section 1108 defined not only the situation where a secondary drain was required, but mandated that the system be completely separate from the primary drainage and be sized to accommodate twice the rainfall rate (see Figure 1, diagrams re-created from the 1997 IPC Code Commentary). Section 1107 of the current International Plumbing Code contains the same requirements; however, the sizing for secondary systems has been reduced to equal that of the primary system.

The Uniform Plumbing Code followed a similar path to incorporating secondary drainage requirements. Prior to the 1994 UPC, the only mention of secondary roof drains is a listing of the materials to be utilized for “over flow drains.” In the 1994 UPC, Rainwater Systems was included as Appendix D to the code. Part A D1.1 (d) notes that:

Overflow drains shall be the same size as the roof drains with the inlet flow line two inches above the low point of the roof and shall be installed independent from the roof drains.

By the 1997 edition of the UPC, section 1101.11.2 had been added that completely prescribed where and how secondary roof drainage was to be provided. Current UPC requirements are equally as specific on what must be provided.

The Standard Plumbing Code did not mention secondary drainage prior to the 1991 Edition. In 1991, section 1507 was added, prescribing the need for secondary drainage in language very similar to what was later incorporated into the 1995 IPC. By 1997, the IPC and SPC had merged.

The parameters of the model codes are all similar in requiring that secondary drainage be provided in any situation where the depth of water on a roof could exceed the structural capacity of the roof. As noted previously, this is not an issue if the roof of the structure is sloped to an external drain such as a gutter or an open-topped downspout.

If the storm drainage system should become overburdened in such a facility, the excess water would simply flow over the edge of the gutter or the top of the downspout and spill to grade. This might cause some temporary inconvenience, but would not likely be a disaster.

Figure 2.

 

Preventing Primary Drain Overload

For a flat roof with interior located drains, with or without a parapet, it is necessary to assure that failure of any or all the primary drains will not overload the roof with water. This can be accomplished in a variety of ways:

  • Eliminating or minimizing a parapet and locating the drains adjacent to the perimeter of the building;
  • Providing a scupper in the parapet, and locating the drains adjacent to the perimeter of the building;
  • Providing an immediately adjacent secondary (overflow) drain next to every primary drain, with a separate piping system.

The better choice, if it can be accommodated, is one of the first two methods, where overflow at the exterior of the building roof is provided without the need for secondary drainage piping. The limiting factor for this method is the ability to locate the primary drainage point within close enough proximity to the exterior of the building to allow for overflow without exceeding the maximum ponding depth.

A common design criteria for roof structural capacity is 50 lbs./sq. ft. Depending on the location of the building, this could be somewhat less in areas where snow load is not a consideration, or somewhat more where heavy snow load or mechanical use of the roof require a higher capacity.

In any case, given that the weight of water on a square foot of roof surface is 5.2 lbs. for every inch of depth, a roof structural capacity of 50 lbs./sq. ft. can accommodate up to 9 inches of ponding. This is the largest depth of water that can be accommodated on any part of the roof surface (where designed for 50 lbs./sq. ft.).

Given that a flat roof is never flat, but is always sloped to drain, the drain will be lower than the elevation of the perimeter of the roof. This is demonstrated in Figure 2.

In the figure, Hsc is the height of the bottom of the scupper above the top of the roof edge. In the case of a building without a parapet, this height would be zero. Hw is the depth that water would pond on the roof prior to overflowing through the scupper. D is the horizontal distance from the edge of the roof to the drain. The formula for determining how far the drain can be from the edge of the roof would then be:

For an allowable ponding depth of 9 inches, with a scupper height 3 inches above the edge of the roof and a roof pitch of 2%, the maximum value for D would be 25 feet. Such an installation would be sufficient to address a building that was 75 feet wide with drains located 25 feet from either edge.

Figure 3.

Where roofs are significantly larger than 75 feet wide, the third method becomes necessary. In this method, each roof drain is provided with an adjacent overflow drain equipped with an overflow weir or dam set at an allowable height related to the desired maximum ponding depth (see Figure 3). Given that the model codes require the secondary drainage system to run completely independent of the primary system, and to discharge above grade, it is somewhat costly and often difficult to provide secondary drainage utilizing this method.

The limiting factor for this type of installation is the ability to reach a location where the secondary drainage piping can discharge above grade at the exterior of the building within the allowable slope of the pipe and not affect the clearance below. For many large warehouse and factory facilities, this limiting factor is quite an issue.

An alternative to consider when utilizing this method is the installation of a siphonic roof drainage system as an overflow drain. Doing so provides significant benefits. Siphonic roof drainage systems not only allow the use of smaller diameter pipe than conventional systems, but they can be routed to the exterior of the building utilizing virtually no slope. There are some difficulties to be addressed in providing the proper capture area with an overflow drain to allow for siphonic action to occur, but the advantages to be gained are obvious.

Currently, siphonic roof drainage is considered an alternative engineered system by the model plumbing codes, and so must be submitted as such for approval by local code officials. Given the recent development of ANSI Standard A112.6.9 and the increase in offerings of siphonic roof drainage products from more and more manufacturers, there is no doubt that the use of this system is bound to increase.

Secondary roof drainage is a matter of safety and must be a consideration on every project. All the model plumbing codes in the United States require that secondary drainage be provided. If addressed early in the project process, the incorporation of simplified methods such as properly sloped roofs, scuppers or the elimination of portions of parapet wall can be utilized to minimize the cost of secondary drainage. The only consideration for these installations is that the water must flow off the roof without collecting to a level greater than can be supported by the roof structure.

If the roof under consideration is too large to allow for flow over the roof to the perimeter without exceeding the maximum ponding depth, or in the special case of a project involving an addition to an existing building that eliminates a previously available overflow path, separate secondary drainage piping from overflow drains routed to the exterior of the building will be necessary. In these cases, the consideration of a siphonic roof drainage system as an alternative could provide significant cost savings and potential solutions that are not otherwise viable.

KEYWORDS: building design rainwater harvesting

Share This Story

Looking for a reprint of this article?
From high-res PDFs to custom plaques, order your copy today!

Recommended Content

JOIN TODAY
to unlock your recommendations.

Already have an account? Sign In

  • Worker using the Milwaukee Tool SWITCH PACK drain cleaner

    Pipeline profits: Drain cleaning, pipe inspection create opportunities

    Drain cleaning and inspection services offer lucrative...
    Plumbing News
    By: Nicole Krawcke
  • Uponor employee, Arturo Moreno

    The reinvestment in American manufacturing and training

    Plumbing & Mechanical Chief Editor Nicole Krawcke and...
    Plumbing News
    By: Nicole Krawcke and Natalie Forster
  • March 2024 Women in Plumbing hero image of woman engineer overlayed by circle of hexagon shapes with numbers from 1 to 10

    Celebrating 10 Influential Women in the Plumbing Industry

    Celebrating Women's History Month and Women in...
    Plumbing News
    By: Nicole Krawcke
close

1 COMPLIMENTARY ARTICLE(S) LEFT

Loader

Already a Registered User? Sign in now.

Subscribe For Free!
  • eNewsletters
  • Online Registration
  • Subscription Customer Service
  • eMagazine
  • Manage My Preferences

NIBCO Press Solutions

NIBCO Press Solutions

IPEX celebrates grand opening of new Florida distribution center

IPEX celebrates grand opening of new Florida distribution center

AI can boost efficiency and profitability for plumbing, HVAC contractors

AI can boost efficiency and profitability for plumbing, HVAC contractors

Bell & Gossett Illustrates Path to Net-zero at AHR Expo

Bell & Gossett Illustrates Path to Net-zero at AHR Expo

More Videos

Sponsored Content

Sponsored Content is a special paid section where industry companies provide high quality, objective, non-commercial content around topics of interest to the Plumbing & Mechanical audience. All Sponsored Content is supplied by the advertising company and any opinions expressed in this article are those of the author and not necessarily reflect the views of Plumbing & Mechanical or its parent company, BNP Media. Interested in participating in our Sponsored Content section? Contact your local rep!

close
  • J.J. Keller CMV vehicles on road
    Sponsored byJ. J. Keller & Associates, Inc.

    The dash cam game-changer for small business safety

Popular Stories

Figure 1 is a sketch of the flow problems of the current plumbing system.

Hydronic heating glitch solved: Why adding a circulator won't fix primary loop flow issue

The interior of a government building.

President Trump signs executive order promoting skilled trades and apprenticeships

Underfloor heating installation with drain sewer hole in bathroom close up on water floor heating.

Using hydronics to leverage time-of-use electrical rates

PM BEMIS June 25 Free Webinar: Optimizing Plumbing Solutions for Single-Family, Multi-Family & Public Spaces

Events

November 13, 2024

Future Proofing MEP: Navigating the 2026 High Efficiency Water Heating Standards

Join our deep dive into DOE’s new standards so you can future-proof your MEP practice.

EARN: 0.1 ASPE CEU; 1 AIA LU/HSW; 0.1 IACET CEU*; 1 PDH

View All Submit An Event

Poll

Will business be up or down in 2025?

Do you anticipate business in 2025 to be up or down in comparison to 2024?
View Results Poll Archive

Products

The Water Came To A Stop

The Water Came To A Stop

See More Products

Download the FREE Water Conservation, Quality & Safety eBook: Plumbing Trends Increasing Safe Water Availability

Related Articles

  • Fundamentals of Siphonic Roof Drainage

    See More
  • Roof drainage

    Roof drainage

    See More
  • A Good Wholesaler Remains An Asset To Your Business

    See More

Related Products

See More Products
  • 418GcA6aLWL__SL210_.jpg

    Primary-Secondary Pumping Made Easy!

  • M:\General Shared\__AEC Store Katie Z\AEC Store\Images\Plumbing\new sites\Plumbing_technology.gif

    Plumbing Technology, Design & Installation

  • QMref Standard_COVER.jpg

    QMref - Quality Maintenance of Commercial Refrigeration Systems

See More Products

Events

View AllSubmit An Event
  • September 14, 2016

    2016 Chicago Design Summit

    LuxeHome at the Merchandise Mart to host Chicago Design Summit on September 14, 2016.
View AllSubmit An Event
×

Keep your content unclogged with our newsletters!

Stay in the know on the latest plumbing & piping industry trends.

JOIN TODAY!
  • RESOURCES
    • Advertise
    • Contact Us
    • Directories
    • Store
    • Want More
    • Supply House Times
  • SIGN UP TODAY
    • Create Account
    • eMagazine
    • eNewsletter
    • Customer Service
    • Manage Preferences
  • SERVICES
    • Marketing Services
    • Reprints
    • Market Research
    • List Rental
    • Survey/Respondent Access
  • STAY CONNECTED
    • LinkedIn
    • Facebook
    • Instagram
    • YouTube
    • X (Twitter)
  • PRIVACY
    • PRIVACY POLICY
    • TERMS & CONDITIONS
    • DO NOT SELL MY PERSONAL INFORMATION
    • PRIVACY REQUEST
    • ACCESSIBILITY

Copyright ©2025. All Rights Reserved BNP Media.

Design, CMS, Hosting & Web Development :: ePublishing

search
cart
facebook instagram twitter linkedin youtube
  • Sign In
  • Create Account
  • Sign Out
  • My Account
  • NEWS
  • PRODUCTS
  • CONTRACTORS
    • BATH & KITCHEN PRO
    • BUSINESS MANAGEMENT
    • HIGH EFFICIENCY HOMES
    • TECHNOLOGY
    • WATER TREATMENT
    • PMC COLUMNS
      • Dave Yates: Contractor’s Corner
      • John Siegenthaler: Hydronics Workshop
      • Kenny Chapman: The Blue Collar Coach
      • Matt Michel: Service Plumbing Pros
      • Scott Secor: Heating Perceptions
  • ENGINEERS
    • CONTINUING EDUCATION
    • DECARBONIZATION | ELECTRIFICATION
    • FIRE PROTECTION
    • GEOTHERMAL | SOLAR THERMAL
    • PIPING | PLUMBING | PVF
    • PME COLUMNS
      • Christoph Lohr: Strategic Plumbing Insights
      • David Dexter: Plumbing Talking Points
      • James Dipping: Engineer Viewpoints
      • John Seigenthaler: Renewable Heating Design
      • Lowell Manalo: Plumbing Essentials
      • Misty Guard: Guard on Compliance
  • RADIANT & HYDRONICS
    • RADIANT COMFORT REPORT
    • THE GLITCH & THE FIX
  • INSIGHTS
    • CODES
    • GREEN PLUMBING & MECHANICAL
    • PROJECT PROFILES
    • COLUMNS
      • Codes Corner
      • Natalie Forster: Editorial Opinion
      • Guest Editorial
    • SPONSOR INSIGHTS
  • MEDIA
    • PODCASTS
    • VIDEOS
    • WEBINARS
  • RESOURCES
    • INDUSTRY CALENDAR
    • DIRECTORIES
    • EBOOKS
    • PM BOOKSTORE
    • CE CENTER
    • MARKET RESEARCH
    • CLASSIFIEDS
  • EMAGAZINE
    • EMAGAZINE
    • ARCHIVE ISSUES
    • CONTACT
    • ADVERTISE
    • PME EMAGAZINE ARCHIVES
  • SIGN UP!