• Sign In
  • Create Account
  • Sign Out
  • My Account
  • NEWS
  • PRODUCTS
  • CONTRACTORS
  • ENGINEERS
  • RADIANT & HYDRONICS
  • INSIGHTS
  • MEDIA
  • RESOURCES
  • EMAGAZINE
  • SIGN UP!
cart
facebook instagram twitter linkedin youtube
  • CONTRACTORS
  • BATH & KITCHEN PRO
  • BUSINESS MANAGEMENT
  • HIGH EFFICIENCY HOMES
  • TECHNOLOGY
  • WATER TREATMENT
  • PMC COLUMNS
  • PMC COLUMNS
  • Dave Yates: Contractor’s Corner
  • John Siegenthaler: Hydronics Workshop
  • Kenny Chapman: The Blue Collar Coach
  • Matt Michel: Service Plumbing Pros
  • Scott Secor: Heating Perceptions
  • ENGINEERS
  • CONTINUING EDUCATION
  • DECARBONIZATION | ELECTRIFICATION
  • FIRE PROTECTION
  • GEOTHERMAL | SOLAR THERMAL
  • PIPING | PLUMBING | PVF
  • PME COLUMNS
  • PME COLUMNS
  • Christoph Lohr: Strategic Plumbing Insights
  • David Dexter: Plumbing Talking Points
  • James Dipping: Engineer Viewpoints
  • John Seigenthaler: Renewable Heating Design
  • Lowell Manalo: Plumbing Essentials
  • Misty Guard: Guard on Compliance
  • RADIANT & HYDRONICS
  • RADIANT COMFORT REPORT
  • THE GLITCH & THE FIX
  • INSIGHTS
  • CODES
  • GREEN PLUMBING & MECHANICAL
  • PROJECT PROFILES
  • COLUMNS
  • SPONSOR INSIGHTS
  • COLUMNS
  • Codes Corner
  • Natalie Forster: Editorial Opinion
  • Guest Editorial
  • MEDIA
  • PODCASTS
  • VIDEOS
  • WEBINARS
  • RESOURCES
  • INDUSTRY CALENDAR
  • DIRECTORIES
  • EBOOKS
  • PM BOOKSTORE
  • CE CENTER
  • MARKET RESEARCH
  • CLASSIFIEDS
  • EMAGAZINE
  • EMAGAZINE
  • ARCHIVE ISSUES
  • CONTACT
  • ADVERTISE
  • PME EMAGAZINE ARCHIVES
search
cart
facebook instagram twitter linkedin youtube
  • Sign In
  • Create Account
  • Sign Out
  • My Account
  • NEWS
  • PRODUCTS
  • CONTRACTORS
    • BATH & KITCHEN PRO
    • BUSINESS MANAGEMENT
    • HIGH EFFICIENCY HOMES
    • TECHNOLOGY
    • WATER TREATMENT
    • PMC COLUMNS
      • Dave Yates: Contractor’s Corner
      • John Siegenthaler: Hydronics Workshop
      • Kenny Chapman: The Blue Collar Coach
      • Matt Michel: Service Plumbing Pros
      • Scott Secor: Heating Perceptions
  • ENGINEERS
    • CONTINUING EDUCATION
    • DECARBONIZATION | ELECTRIFICATION
    • FIRE PROTECTION
    • GEOTHERMAL | SOLAR THERMAL
    • PIPING | PLUMBING | PVF
    • PME COLUMNS
      • Christoph Lohr: Strategic Plumbing Insights
      • David Dexter: Plumbing Talking Points
      • James Dipping: Engineer Viewpoints
      • John Seigenthaler: Renewable Heating Design
      • Lowell Manalo: Plumbing Essentials
      • Misty Guard: Guard on Compliance
  • RADIANT & HYDRONICS
    • RADIANT COMFORT REPORT
    • THE GLITCH & THE FIX
  • INSIGHTS
    • CODES
    • GREEN PLUMBING & MECHANICAL
    • PROJECT PROFILES
    • COLUMNS
      • Codes Corner
      • Natalie Forster: Editorial Opinion
      • Guest Editorial
    • SPONSOR INSIGHTS
  • MEDIA
    • PODCASTS
    • VIDEOS
    • WEBINARS
  • RESOURCES
    • INDUSTRY CALENDAR
    • DIRECTORIES
    • EBOOKS
    • PM BOOKSTORE
    • CE CENTER
    • MARKET RESEARCH
    • CLASSIFIEDS
  • EMAGAZINE
    • EMAGAZINE
    • ARCHIVE ISSUES
    • CONTACT
    • ADVERTISE
    • PME EMAGAZINE ARCHIVES
  • SIGN UP!
ColumnsPlumbing & Mechanical ContractorRadiant & HydronicsJohn Siegenthaler: Hydronics Workshop

Hydronics Workshop | John Siegenthaler

There are still viable applications for solar thermal technology

Sōl Survivor

By John Siegenthaler, P.E.
01 PM 0923 CLMN John Siegenthaler

Image courtesy of chinaface / iStock / Getty Images Plus

August 31, 2023
✕
Image in modal.

These days, the term “solar energy” is almost always associated with photovoltaic (PV) systems that produce electricity from sunlight. Those systems range from a single small PV module used to maintain charge in a 12-volt battery, to acre upon acre of land covered with thousands of PV modules to create a “solar farm” that, by day, generates megawatts of power. Where I live in upstate New York, the latter are sprouting up in many local communities. Utility-scale solar developers are leveraging significant investment incentives provided by state and federal governments on their quest to reach 100% renewably-sourced electricity in the not-too-distant future. Landowners, who once made an “adequate” living from their acreage as dairy farmers, are comfortably retiring on leasing agreements made with these developers.

Few would have envisioned such a situation back in the 1970s. That’s when I got my first job with a company that designed and manufactured solar thermal collectors. Back then, solar photovoltaics was mostly reserved for remote mission critical or spacecraft applications, where the nominal $1,000/ watt cost (in 1970s dollars) was acceptable. Outside of this small niche, solar thermal applications were the norm, with much of the market focused on residential solar space heating. Houses were constructed as supporting structures for massive solar collector arrays in an attempt to approach 100% solar heating. One example, from 1978, is shown in Figure 1.

Figure 1

02 PM 0923 CLMN John Siegenthaler Fig 1

Figure 1

Many collector arrays of that vintage were grossly oversized for swing season loads, and required costly heat dump provisions to “survive” intense summer sunshine. A controller failure or power outage during a bright and hot summer afternoon lead to pressure relief valve openings, thermal breakdown of antifreeze solutions and even irreversible material outgassing within the collectors that degraded their subsequent performance.

That first round of interest in active solar thermal technology within the U.S. all but died during the latter 1980s, and remained in that state through much of the 1990s and first part of the 21st century. The solar coals were rekindled around 2008, driven by increasing concerns over global warming and well as some energy price spikes. However, this time around, much of the industry recognized that using solar collectors to offset a high percentage of conventional fuel for space heating was not a realistic goal in most locations, especially the Northeastern U.S.

Domestic water heating became the preferred load to be paired with solar thermal collectors. The primary rationale being that domestic water heating was a year-round load. As such, it benefited from abundant solar radiation and higher ambient temperatures for several months every year. Another benefit was that domestic water heating operated as lower average water temperatures compared to those typically needed for space heating applications.

Sweet spot

Although the market for solar thermal systems is a tiny fraction of what it once was, I still believe there are viable applications that could help in decarbonizing thermal energy systems.

One system configuration that has always interested me is what I call a “solar DHW+” system. The primary load for these systems is domestic water heating. The “+” implies a small contribution to space heating, mostly during swing seasons.

This approach keeps the collector array limited to minimize overheating potential in summer. It also leverages major components of the system, such as the thermal storage tank, for multiple functions. The energy collection potential of a Solar DHW + system is also better matched with the load in modern energy-efficient homes.

One approach to a solar DHW+ system that uses a dual coil thermal storage tank, is shown in Figure 2.

Figure 2

03 PM 0923 CLMN John Siegenthaler Fig 2

Figure 2

The water in the tank’s shell is “system water,” not domestic water. The lower coil provides heat input from the solar collectors. Its position within the tank maximizes the average temperature difference between the outer surface of the coil and the coolest water in the tank. The tank also provides hydraulic separation of the boiler circulator and variable speed distribution circulator.

The solar collectors are part of a closed circuit operating with an antifreeze solution. That circuit is equipped with filling/purging valves, circulator, air separation, expansion tank, pressure relief valve, and high point air vent.

The collector circulator is operated by a differential temperature controller that continually monitors the temperature in the lower portion of the storage tank, and the absorber plate in one of the solar collectors. The circulator control action could be on/off or variable speed depending on the temperature differential between the absorber plate and the tank.

The upper coil extracts heat from the system water in the tank and transfers it to domestic water. The upper coil must be constructed of copper or stainless steel that’s compatible with domestic water. This is a “single pass” coil. Cold domestic water enters the lower coil connection and absorbs heat as it flows upward and eventually exits the coil.

Combination isolation/flushing valves have been installed near the inlet and outlet of this coil, allowing it to be periodically isolated from the system and flushed with a mild acid solution to reduce any scale build-up.

The temperature of the domestic water leaving the upper coil depends on the temperature of the water surrounding the coil, as well as the coil’s surface area and the flow rate through it. Slower flow rates, and thus more “dwell time” in the coil, may allow the domestic water leaving the coil to approach the temperature at the top of the tank. Rapid flow rates combined with smaller coils, or coils that have accumulated mineral deposits will provide less heat and thus lower coil exit temperature.

The need to provide supplemental heating of the domestic water leaving the coil depends on the upper tank temperature and rate of flow through the coil. If the coil is generously sized, and the water in the tank is maintained at least 10° F above the expected DHW outlet temperature by the boiler, there is likely no need for supplemental heating. However, those perquisites are not always met - more on this later.

Given the possibility of some really productive solar days (e.g., sunny and warm), it’s crucially important to include the ASSE 1017-rated anti-scald mixing valve in the DHW assembly to protect against high water temperatures entering the building’s plumbing distribution piping.

The thermal mass of the storage tank helps stabilize domestic hot water delivery. The tank also provides buffering for the zoned space heating system, which in Figure 1, consists of several panel radiators and some radiant panel circuits, all regulated by thermostatic radiator valves.

A variable-speed pressure-regulated circulator operates 24/7 during the heating season. It automatically changes speed to match the flow needs of the system.

A motorized mixing valve, operating on outdoor reset control, ensures an adequate but not excessive supply water temperature to the heat emitters.

Electrifying

Another variation of the “solar DHW +” system substitutes a split system air-to-water heat pump for the boiler, as shown in Figure 3.

Figure 3

04 PM 0923 CLMN John Siegenthaler Fig 3

Figure 3

The heat pump provides supplemental heat input when needed, but its performance is more constrained compared to the boiler. To optimize the heat pump’s performance, the water temperature in the storage tank should be as low as possible but still able to provide the required heat output at the heat emitters. Outdoor reset control is ideal in this situation. Based on simulations I’ve done, the seasonal COP of the heat pump improves when this method of control is used in lieu of maintaining the tank temperature based on a setpoint high enough to fully heat domestic water to a delivery temperature of 120° F or higher.

Domestic water is “preheated” as it passes through the upper tank coil. A tankless electric water heater provides the final temperature boost, making this an all-electric system. All domestic hot water passes through the ASSE 1017 anti-scald valve before entering the building’s plumbing distribution system.

The motorized mixing valve is still needed if the heat emitters could be damaged or if uncomfortable or unsafe surface temperatures could be created when the tank is heated by the solar thermal collector to a temperature much higher than required.

Still viable

The “Solar DHW +” concept represents a “sweet spot” for active solar thermal technology that can coordinate well with low energy houses. The all-electric option shown in Figure 3 is especially well suited for homes aiming for “net zero” energy status. It’s worth keeping this concept in your renewal energy portfolio.

KEYWORDS: extended manifold systems hydronic systems manifold

Share This Story

Looking for a reprint of this article?
From high-res PDFs to custom plaques, order your copy today!

Siegenthaler

John Siegenthaler, P.E., is a consulting engineer and principal of Appropriate Designs in Holland Patent, New York. In partnership with HeatSpring, he has developed several online courses that provide in-depth, design-level training in modern hydronics systems, air-to-water heat pumps and biomass boiler systems. Additional information and resources for hydronic system design are available on Siegenthaler’s website,  www.hydronicpros.com.

Recommended Content

JOIN TODAY
to unlock your recommendations.

Already have an account? Sign In

  • Worker using the Milwaukee Tool SWITCH PACK drain cleaner

    Pipeline profits: Drain cleaning, pipe inspection create opportunities

    Drain cleaning and inspection services offer lucrative...
    Plumbing News
    By: Nicole Krawcke
  • Uponor employee, Arturo Moreno

    The reinvestment in American manufacturing and training

    Plumbing & Mechanical Chief Editor Nicole Krawcke and...
    Plumbing News
    By: Nicole Krawcke and Natalie Forster
  • March 2024 Women in Plumbing hero image of woman engineer overlayed by circle of hexagon shapes with numbers from 1 to 10

    Celebrating 10 Influential Women in the Plumbing Industry

    Celebrating Women's History Month and Women in...
    Plumbing News
    By: Nicole Krawcke
close

1 COMPLIMENTARY ARTICLE(S) LEFT

Loader

Already a Registered User? Sign in now.

Subscribe For Free!
  • eNewsletters
  • Online Registration
  • Subscription Customer Service
  • eMagazine
  • Manage My Preferences

Bell & Gossett Illustrates Path to Net-zero at AHR Expo

Bell & Gossett Illustrates Path to Net-zero at AHR Expo

NIBCO Press Solutions

NIBCO Press Solutions

IPEX celebrates grand opening of new Florida distribution center

IPEX celebrates grand opening of new Florida distribution center

AI can boost efficiency and profitability for plumbing, HVAC contractors

AI can boost efficiency and profitability for plumbing, HVAC contractors

More Videos

Sponsored Content

Sponsored Content is a special paid section where industry companies provide high quality, objective, non-commercial content around topics of interest to the Plumbing & Mechanical audience. All Sponsored Content is supplied by the advertising company and any opinions expressed in this article are those of the author and not necessarily reflect the views of Plumbing & Mechanical or its parent company, BNP Media. Interested in participating in our Sponsored Content section? Contact your local rep!

close
  • J.J. Keller CMV vehicles on road
    Sponsored byJ. J. Keller & Associates, Inc.

    The dash cam game-changer for small business safety

Popular Stories

The interior of a government building.

President Trump signs executive order promoting skilled trades and apprenticeships

Figure 1 is a sketch of the flow problems of the current plumbing system.

Hydronic heating glitch solved: Why adding a circulator won't fix primary loop flow issue

Underfloor heating installation with drain sewer hole in bathroom close up on water floor heating.

Using hydronics to leverage time-of-use electrical rates

PM BEMIS June 25 Free Webinar: Optimizing Plumbing Solutions for Single-Family, Multi-Family & Public Spaces

Events

November 13, 2024

Future Proofing MEP: Navigating the 2026 High Efficiency Water Heating Standards

Join our deep dive into DOE’s new standards so you can future-proof your MEP practice.

EARN: 0.1 ASPE CEU; 1 AIA LU/HSW; 0.1 IACET CEU*; 1 PDH

View All Submit An Event

Poll

Will business be up or down in 2025?

Do you anticipate business in 2025 to be up or down in comparison to 2024?
View Results Poll Archive

Products

The Water Came To A Stop

The Water Came To A Stop

See More Products

Download the FREE Water Conservation, Quality & Safety eBook: Plumbing Trends Increasing Safe Water Availability

Related Articles

  • March 2014 Glitch drawing

    Multiple heating zones for hydronic and radiant applications

    See More
  • John Siegenthaler Hydrolics Workshop

    Solar Thermal Report- Spring 2013: If I Made the Tanks, Part 1

    See More
  • Homemade Solar Thermal System

    See More
×

Keep your content unclogged with our newsletters!

Stay in the know on the latest plumbing & piping industry trends.

JOIN TODAY!
  • RESOURCES
    • Advertise
    • Contact Us
    • Directories
    • Store
    • Want More
    • Supply House Times
  • SIGN UP TODAY
    • Create Account
    • eMagazine
    • eNewsletter
    • Customer Service
    • Manage Preferences
  • SERVICES
    • Marketing Services
    • Reprints
    • Market Research
    • List Rental
    • Survey/Respondent Access
  • STAY CONNECTED
    • LinkedIn
    • Facebook
    • Instagram
    • YouTube
    • X (Twitter)
  • PRIVACY
    • PRIVACY POLICY
    • TERMS & CONDITIONS
    • DO NOT SELL MY PERSONAL INFORMATION
    • PRIVACY REQUEST
    • ACCESSIBILITY

Copyright ©2025. All Rights Reserved BNP Media.

Design, CMS, Hosting & Web Development :: ePublishing

search
cart
facebook instagram twitter linkedin youtube
  • Sign In
  • Create Account
  • Sign Out
  • My Account
  • NEWS
  • PRODUCTS
  • CONTRACTORS
    • BATH & KITCHEN PRO
    • BUSINESS MANAGEMENT
    • HIGH EFFICIENCY HOMES
    • TECHNOLOGY
    • WATER TREATMENT
    • PMC COLUMNS
      • Dave Yates: Contractor’s Corner
      • John Siegenthaler: Hydronics Workshop
      • Kenny Chapman: The Blue Collar Coach
      • Matt Michel: Service Plumbing Pros
      • Scott Secor: Heating Perceptions
  • ENGINEERS
    • CONTINUING EDUCATION
    • DECARBONIZATION | ELECTRIFICATION
    • FIRE PROTECTION
    • GEOTHERMAL | SOLAR THERMAL
    • PIPING | PLUMBING | PVF
    • PME COLUMNS
      • Christoph Lohr: Strategic Plumbing Insights
      • David Dexter: Plumbing Talking Points
      • James Dipping: Engineer Viewpoints
      • John Seigenthaler: Renewable Heating Design
      • Lowell Manalo: Plumbing Essentials
      • Misty Guard: Guard on Compliance
  • RADIANT & HYDRONICS
    • RADIANT COMFORT REPORT
    • THE GLITCH & THE FIX
  • INSIGHTS
    • CODES
    • GREEN PLUMBING & MECHANICAL
    • PROJECT PROFILES
    • COLUMNS
      • Codes Corner
      • Natalie Forster: Editorial Opinion
      • Guest Editorial
    • SPONSOR INSIGHTS
  • MEDIA
    • PODCASTS
    • VIDEOS
    • WEBINARS
  • RESOURCES
    • INDUSTRY CALENDAR
    • DIRECTORIES
    • EBOOKS
    • PM BOOKSTORE
    • CE CENTER
    • MARKET RESEARCH
    • CLASSIFIEDS
  • EMAGAZINE
    • EMAGAZINE
    • ARCHIVE ISSUES
    • CONTACT
    • ADVERTISE
    • PME EMAGAZINE ARCHIVES
  • SIGN UP!