• Sign In
  • Create Account
  • Sign Out
  • My Account
  • NEWS
  • PRODUCTS
  • CONTRACTORS
  • ENGINEERS
  • RADIANT & HYDRONICS
  • INSIGHTS
  • MEDIA
  • RESOURCES
  • EMAGAZINE
  • SIGN UP!
cart
facebook instagram twitter linkedin youtube
  • CONTRACTORS
  • BATH & KITCHEN PRO
  • BUSINESS MANAGEMENT
  • HIGH EFFICIENCY HOMES
  • TECHNOLOGY
  • WATER TREATMENT
  • PMC COLUMNS
  • PMC COLUMNS
  • Dave Yates: Contractor’s Corner
  • John Siegenthaler: Hydronics Workshop
  • Kenny Chapman: The Blue Collar Coach
  • Matt Michel: Service Plumbing Pros
  • Scott Secor: Heating Perceptions
  • ENGINEERS
  • CONTINUING EDUCATION
  • DECARBONIZATION | ELECTRIFICATION
  • FIRE PROTECTION
  • GEOTHERMAL | SOLAR THERMAL
  • PIPING | PLUMBING | PVF
  • PME COLUMNS
  • PME COLUMNS
  • Christoph Lohr: Strategic Plumbing Insights
  • David Dexter: Plumbing Talking Points
  • James Dipping: Engineer Viewpoints
  • John Seigenthaler: Renewable Heating Design
  • Lowell Manalo: Plumbing Essentials
  • Misty Guard: Guard on Compliance
  • RADIANT & HYDRONICS
  • RADIANT COMFORT REPORT
  • THE GLITCH & THE FIX
  • INSIGHTS
  • CODES
  • GREEN PLUMBING & MECHANICAL
  • PROJECT PROFILES
  • COLUMNS
  • SPONSOR INSIGHTS
  • COLUMNS
  • Codes Corner
  • Natalie Forster: Editorial Opinion
  • Guest Editorial
  • MEDIA
  • PODCASTS
  • VIDEOS
  • WEBINARS
  • RESOURCES
  • INDUSTRY CALENDAR
  • DIRECTORIES
  • EBOOKS
  • PM BOOKSTORE
  • CE CENTER
  • MARKET RESEARCH
  • CLASSIFIEDS
  • EMAGAZINE
  • EMAGAZINE
  • ARCHIVE ISSUES
  • CONTACT
  • ADVERTISE
  • PME EMAGAZINE ARCHIVES
search
cart
facebook instagram twitter linkedin youtube
  • Sign In
  • Create Account
  • Sign Out
  • My Account
  • NEWS
  • PRODUCTS
  • CONTRACTORS
    • BATH & KITCHEN PRO
    • BUSINESS MANAGEMENT
    • HIGH EFFICIENCY HOMES
    • TECHNOLOGY
    • WATER TREATMENT
    • PMC COLUMNS
      • Dave Yates: Contractor’s Corner
      • John Siegenthaler: Hydronics Workshop
      • Kenny Chapman: The Blue Collar Coach
      • Matt Michel: Service Plumbing Pros
      • Scott Secor: Heating Perceptions
  • ENGINEERS
    • CONTINUING EDUCATION
    • DECARBONIZATION | ELECTRIFICATION
    • FIRE PROTECTION
    • GEOTHERMAL | SOLAR THERMAL
    • PIPING | PLUMBING | PVF
    • PME COLUMNS
      • Christoph Lohr: Strategic Plumbing Insights
      • David Dexter: Plumbing Talking Points
      • James Dipping: Engineer Viewpoints
      • John Seigenthaler: Renewable Heating Design
      • Lowell Manalo: Plumbing Essentials
      • Misty Guard: Guard on Compliance
  • RADIANT & HYDRONICS
    • RADIANT COMFORT REPORT
    • THE GLITCH & THE FIX
  • INSIGHTS
    • CODES
    • GREEN PLUMBING & MECHANICAL
    • PROJECT PROFILES
    • COLUMNS
      • Codes Corner
      • Natalie Forster: Editorial Opinion
      • Guest Editorial
    • SPONSOR INSIGHTS
  • MEDIA
    • PODCASTS
    • VIDEOS
    • WEBINARS
  • RESOURCES
    • INDUSTRY CALENDAR
    • DIRECTORIES
    • EBOOKS
    • PM BOOKSTORE
    • CE CENTER
    • MARKET RESEARCH
    • CLASSIFIEDS
  • EMAGAZINE
    • EMAGAZINE
    • ARCHIVE ISSUES
    • CONTACT
    • ADVERTISE
    • PME EMAGAZINE ARCHIVES
  • SIGN UP!
Plumbing & Mechanical Contractor

Is boiler turndown really that important?

High turndown does not equal high efficiency.

By Dan Goellner
Hydronic Boiler
Raypack Closeup
Hydronic Boiler
Raypack Closeup
June 9, 2021

It’s without question that technology has improved the mechanical world around us. From my smartphone, I can instantly see the health of hundreds of our boiler plants across the country. A building management system (BMS) can sense occupancy to control everything from lighting to the snowmelt systems. Water heaters can read the voltage through their powered anode rods to calculate the life left on the tank. While technological advances like these have allowed us to bend the rules of mechanical designs, we can’t fall into the trap of using technology to skate around fundamental engineering practices. 

This leads me to the discussion of turndown. Turndown is simply the operational range of a device, i.e. maximum capacity divided by minimum capacity. A box fan that spins at 50% on its lowest speed has a 2:1 turndown (1 ÷ 0.5 = 2). For decades, a two-stage heating system able to turn down to 50% was considered “high-tech” because most were simply on/off. In fact, last year I upgraded my home’s HVAC and installed one of my company’s top-of-the-line 98% AFUE forced air natural gas furnaces with modulating 2.5:1 turndown, and it’s been amazing. On low fire and low fan speed, it’s whisper quiet. On shoulder season days, it cycles two or three times per hour, well within the six-cycle per-hour rule of thumb. It’s important to note my home’s R-value did not change, and the furnace is sized properly. Figure 1 compares the turndown ratio for five separate boilers. You can see the difference only affects the bottom end, and while a 10:1 to 25:1 sounds like a dramatic increase, when you do the math, it’s only a difference of 10% minimum fire vs. 4% minimum fire. 

Turndown Comparison Figure 1

 

Maximizing efficiency

This brings us to the efficiency topic. Fifty years ago, there was not a major focus on thermally efficient building design, especially for commercial buildings. Boilers with 70% efficiency ratings were sized without CAD models and without heating load software, so the engineers had to make a lot of assumptions. The boilers were commissioned, and away they went for years and years. The boiler was hot, the occupants were warm and all was right with the world. 

Fast forward 25 years through oil embargos and melting glaciers, and it became widely accepted that we need to be more responsible with the conservation of fuel and with fuel emissions. The federal government incentivized owners to make their buildings more energy efficient by doing things such as adding insulation, replacing doors and windows and, eventually, replacing those low-efficiency boilers. 

With these updates, the buildings’ R-value increased by 40%, and the new boiler efficiency increased to 85%. What didn’t change though was the power rating of the new boiler. They simply replaced a 4,000 MBH input boiler with another 4,000 MBH input boiler because it wasn’t in the scope to pay for a new heat loss calculation, and most certainly, the designer wasn’t going to be the one to undersize the boiler and have cold customers. The result was a boiler extremely oversized even on the coldest design day, cycling 8 times per hour on average winter days, and on shoulder season days, it would short cycle terribly. The 2:1 turndown with the small load simply wasn’t enough to allow the boiler to run more than a couple minutes. Thus began the turndown race for the boiler manufacturers and their subsequent marketing push to mechanical engineering firms.

Over the years, we’ve found turndown is often incorrectly associated with efficiency. High turndown does not equal high efficiency. Figure 2 represents a typical condensing boiler efficiency curve vs. incoming water temperature shown at full fire and shown at a 4:1 turndown (25% fire). It is true that condensing boilers gain efficiency at lower firing rates, but those gains are marginal — below 25% fire. If you’re chasing high efficiency by operating a boiler at low firing rates, it can be very tricky because boiler output needs to match the building load. Would you quadruple the number of boilers so they can run together in parallel at 25% fire when one boiler running at full power would’ve met the demand? Does that 3% efficiency gain outweigh the losses associated with the pumps, blowers and wear and tear on the parallel boilers?

Turndown Comparison Figure 2

There are countless condensing high-efficiency boilers running today with very high turndown, such as 25:1 (4% minimum fire), which are running 160° F return water and resulting in poor efficiency. You can see at those temperatures, the efficiency is the same regardless of firing rate. In fact, at 160°, there isn’t any condensing of flue gasses happening whatsoever, so the more cost-effective solution is likely a mid-efficiency boiler. The good engineering practice here is to design the system to run at higher efficiency at any firing rate by optimizing outdoor reset, slowing pump flow rates and sizing emitters to achieve cooler return water temperatures. 

So where is a high turndown boiler applicable? First of all, “high turndown” is a relative term. Good designers I know say 8:1 is the highest you’ll ever need, and sometimes, it’s the most a building would even tolerate. By turning down the firing rate, the flow rate will need to drop to maintain Delta-T or the Delta-T will drop to maintain flow rate or a combination of both. 

If a building loop was designed for a maximum of 400 gpm, what would happen if flow was reduced by 96%? Or if zones were designed for a 40° Delta-T utilizing the cool return water for efficiency, but at minimum fire, they’re only seeing 2° Delta-T? What is the boiler efficiency, and will you have problems with valve hunting, sensor accuracy and cold zones? In general, turndown higher than 8:1 is a Band-Aid to keep a boiler from short-cycling (more than 6 times per hour) when it is grossly oversized for the actual heating load. 

This chart in Figure 3 represents a case study done 10 years ago using boilers with a 4:1 turndown ratio. The building is a five-story city hall utilizing (3) 1,500 MBH boilers (minimum fire 375 MBH). The building heating and domestic hot water load is represented by the hours of runtime at every 100 MBH increment. The area shaded in yellow is below the 375 MBH threshold where one boiler is cycling off at least once per hour, totaling 509 hours. The area shaded in green represents boilers running continuously without cycling, totaling 7,696 hours. At minimum fire to meet the minimum load, the boiler would cycle around three times per hour, which is great.

Turndown Comparison Figure 3

For comparison, a 10:1 turndown boiler would cycle about once per hour. Using a natural gas rate of $9.20/MCF, the cost of the fuel used during the yellow-shaded period is $1,060, compared to $95,670 during the green-shaded period. If efforts were made to reduce costs, relatively speaking, there’s nothing to gain on the low power periods when the boiler is cycling. In other words, boilers with higher turndown would not provide any realistic improvements in cost, efficiency or wear and tear. 

It’s worth noting many of our products today have turndown well above 4:1, but the study shows how a properly sized system can operate beautifully throughout the year with a modest 25% minimum firing rate. 

With all this mind, I wanted to leave you with a few tips to ensure you can maximize your turndown efforts. First, quality design work is timeless. Second, utilize resources such as representative agencies and manufacturers to minimize your assumptions. Just because a product specification sheet says it can do something doesn’t mean it’ll be happy doing so. And third, ensure you take the time to select the right tool for the job, and don’t use technology as a substitute for fundamental engineering practices.

KEYWORDS: boiler energy efficiency turndown

Share This Story

Looking for a reprint of this article?
From high-res PDFs to custom plaques, order your copy today!

Dan Goellner is regional manager for Raypak, a division of Rheem. Goellner holds a bachelor of science degree in mechanical engineering from the University of Missouri and a MBA from Webster University. He grew up working in the family HVAC business, and he has 19 years of professional experience with design, project management and sales in the commercial construction industry.

Recommended Content

JOIN TODAY
to unlock your recommendations.

Already have an account? Sign In

  • Worker using the Milwaukee Tool SWITCH PACK drain cleaner

    Pipeline profits: Drain cleaning, pipe inspection create opportunities

    Drain cleaning and inspection services offer lucrative...
    Green Plumbing and Mechanical
    By: Nicole Krawcke
  • Uponor employee, Arturo Moreno

    The reinvestment in American manufacturing and training

    Plumbing & Mechanical Chief Editor Nicole Krawcke and...
    Plumbing News
    By: Nicole Krawcke and Natalie Forster
  • March 2024 Women in Plumbing hero image of woman engineer overlayed by circle of hexagon shapes with numbers from 1 to 10

    Celebrating 10 Influential Women in the Plumbing Industry

    Celebrating Women's History Month and Women in...
    Plumbing News
    By: Nicole Krawcke
close

1 COMPLIMENTARY ARTICLE(S) LEFT

Loader

Already a Registered User? Sign in now.

Subscribe For Free!
  • eNewsletters
  • Online Registration
  • Subscription Customer Service
  • eMagazine
  • Manage My Preferences

AI can boost efficiency and profitability for plumbing, HVAC contractors

AI can boost efficiency and profitability for plumbing, HVAC contractors

Bell & Gossett Illustrates Path to Net-zero at AHR Expo

Bell & Gossett Illustrates Path to Net-zero at AHR Expo

NIBCO Press Solutions

NIBCO Press Solutions

IPEX celebrates grand opening of new Florida distribution center

IPEX celebrates grand opening of new Florida distribution center

More Videos

Sponsored Content

Sponsored Content is a special paid section where industry companies provide high quality, objective, non-commercial content around topics of interest to the Plumbing & Mechanical audience. All Sponsored Content is supplied by the advertising company and any opinions expressed in this article are those of the author and not necessarily reflect the views of Plumbing & Mechanical or its parent company, BNP Media. Interested in participating in our Sponsored Content section? Contact your local rep!

close
  • J.J. Keller CMV vehicles on road
    Sponsored byJ. J. Keller & Associates, Inc.

    The dash cam game-changer for small business safety

Popular Stories

Underfloor heating installation with drain sewer hole in bathroom close up on water floor heating.

Using hydronics to leverage time-of-use electrical rates

Watts Nexa mobile image

Behind the Wall: Where smart plumbing gets smarter

Six tankless water heaters that feed the nutraceutical manufacturer’s operations.

How to deliver large volumes of hot water quickly and intermittently

PMCE Home-X April 29 Free Webinar: From Legacy to Leadership: Preparing Your Home Services Business for the Next Generation

Events

November 13, 2024

Future Proofing MEP: Navigating the 2026 High Efficiency Water Heating Standards

Join our deep dive into DOE’s new standards so you can future-proof your MEP practice.

EARN: 0.1 ASPE CEU; 1 AIA LU/HSW; 0.1 IACET CEU*; 1 PDH

View All Submit An Event

Poll

Will business be up or down in 2025?

Do you anticipate business in 2025 to be up or down in comparison to 2024?
View Results Poll Archive

Products

The Water Came To A Stop

The Water Came To A Stop

See More Products

Download the FREE Water Conservation, Quality & Safety eBook: Plumbing Trends Increasing Safe Water Availability

Related Articles

  • Kenny Chapman

    Kenny Chapman: Culture is more important than ever

    See More
  • Laars Boilers

    Higher turndown ratios, parallel cascading are keys to efficiency

    See More
  • February 2014 Glitch drawing

    The geothermal heat pump is just like a boiler

    See More

Related Products

See More Products
  • 51CHeeKvw4L._SX322_BO1,204,203,200_.jpg

    Hydronic Radiant Heating: A Practical Guide for the Nonengineer Installer

  • M:\General Shared\__AEC Store Katie Z\AEC Store\Images\Plumbing\new sites\classic_hydronics.gif

    Classic Hydronics - How To Get The Most From Those Older Hot-Water Heating Systems

  • quick-basic-hy.gif

    Quick & Basic Hydronic Controls

See More Products
×

Keep your content unclogged with our newsletters!

Stay in the know on the latest plumbing & piping industry trends.

JOIN TODAY!
  • RESOURCES
    • Advertise
    • Contact Us
    • Directories
    • Store
    • Want More
    • Supply House Times
  • SIGN UP TODAY
    • Create Account
    • eMagazine
    • eNewsletter
    • Customer Service
    • Manage Preferences
  • SERVICES
    • Marketing Services
    • Reprints
    • Market Research
    • List Rental
    • Survey/Respondent Access
  • STAY CONNECTED
    • LinkedIn
    • Facebook
    • Instagram
    • YouTube
    • X (Twitter)
  • PRIVACY
    • PRIVACY POLICY
    • TERMS & CONDITIONS
    • DO NOT SELL MY PERSONAL INFORMATION
    • PRIVACY REQUEST
    • ACCESSIBILITY

Copyright ©2025. All Rights Reserved BNP Media.

Design, CMS, Hosting & Web Development :: ePublishing

search
cart
facebook instagram twitter linkedin youtube
  • Sign In
  • Create Account
  • Sign Out
  • My Account
  • NEWS
  • PRODUCTS
  • CONTRACTORS
    • BATH & KITCHEN PRO
    • BUSINESS MANAGEMENT
    • HIGH EFFICIENCY HOMES
    • TECHNOLOGY
    • WATER TREATMENT
    • PMC COLUMNS
      • Dave Yates: Contractor’s Corner
      • John Siegenthaler: Hydronics Workshop
      • Kenny Chapman: The Blue Collar Coach
      • Matt Michel: Service Plumbing Pros
      • Scott Secor: Heating Perceptions
  • ENGINEERS
    • CONTINUING EDUCATION
    • DECARBONIZATION | ELECTRIFICATION
    • FIRE PROTECTION
    • GEOTHERMAL | SOLAR THERMAL
    • PIPING | PLUMBING | PVF
    • PME COLUMNS
      • Christoph Lohr: Strategic Plumbing Insights
      • David Dexter: Plumbing Talking Points
      • James Dipping: Engineer Viewpoints
      • John Seigenthaler: Renewable Heating Design
      • Lowell Manalo: Plumbing Essentials
      • Misty Guard: Guard on Compliance
  • RADIANT & HYDRONICS
    • RADIANT COMFORT REPORT
    • THE GLITCH & THE FIX
  • INSIGHTS
    • CODES
    • GREEN PLUMBING & MECHANICAL
    • PROJECT PROFILES
    • COLUMNS
      • Codes Corner
      • Natalie Forster: Editorial Opinion
      • Guest Editorial
    • SPONSOR INSIGHTS
  • MEDIA
    • PODCASTS
    • VIDEOS
    • WEBINARS
  • RESOURCES
    • INDUSTRY CALENDAR
    • DIRECTORIES
    • EBOOKS
    • PM BOOKSTORE
    • CE CENTER
    • MARKET RESEARCH
    • CLASSIFIEDS
  • EMAGAZINE
    • EMAGAZINE
    • ARCHIVE ISSUES
    • CONTACT
    • ADVERTISE
    • PME EMAGAZINE ARCHIVES
  • SIGN UP!